You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Concerted efforts to study starvation and survival of nondifferentiating vegeta tive heterotrophic bacteria have been made with various degrees of intensity, in different bacteria and contexts, over more than the last 30 years. As with bacterial growth in natural ecosystem conditions, these research efforts have been intermittent, with rather long periods of limited or no production in between. While several important and well-received reviews and proceedings on the topic of this monograph have been published during the last three to four decades, the last few years have seen a marked increase in reviews on starvation survival in non-spore-forming bacteria. This increase reflects a realizati...
This timely and original handbook paves the way to success in plant-based drug development, systematically addressing the issues facing a pharmaceutical scientist who wants to turn a plant compound into a safe and effective drug. Plant pharmacologists from around the world demonstrate the potentials and pitfalls involved, with many of the studies and experiments reported here published for the first time. The result is a valuable source of information unavailable elsewhere.
The most definitive manual of microbes in air, water, and soil and their impact on human health and welfare. • Incorporates a summary of the latest methodology used to study the activity and fate of microorganisms in various environments. • Synthesizes the latest information on the assessment of microbial presence and microbial activity in natural and artificial environments. • Features a section on biotransformation and biodegradation. • Serves as an indispensable reference for environmental microbiologists, microbial ecologists, and environmental engineers, as well as those interested in human diseases, water and wastewater treatment, and biotechnology.
Living in biofilms is the common way of life of microorganisms, transiently immobilized in their matrix of extracellular polymeric substances (EPS), interacting in many ways and using the matrix as an external digestion and protection system. This is how they have organized their life in the environment, in the medical context and in technical systems – and has helped make them the oldest, most successful and ubiquitous form of life. In this book, hot spots in current biofilm research are presented in critical and sometimes provocative chapters. This serves a twofold purpose: to provide an overview and to inspire further discussions. Above all, the book seeks to stimulate lateral thinking.
Biofilms affect the lives of all of us, growing as they do for example on our teeth (as plaque), on catheters and medical implants in our bodies, on our boats and ships, in food processing environments, and in drinking and industrial water treatment systems. They are highly complex biological communities whose detailed structure and functioning is only gradually being unravelled, with the development of increasingly sophisticated technology for their study. Biofilms almost always have a negative impact on human affairs (flocs in sewage treatment plants are a major exception) and a lot of research is being carried out to gain a better understanding of them, so that we will be in a better position to control them. This volume, with contributions by international experts from widely diverse areas of this field, presents a state-of-the-art picture of where we are at present in terms of our knowledge of biofilms, the techniques being used to study them, and possible strategies for controlling their growth more successfully. It should provide a valuable reference source for information on biofilms and their control for many years to come.
Oceans are an abundant source of diverse biomaterials with potential for an array of uses. Marine Biomaterials: Characterization, Isolation and Applications brings together the wide range of research in this important area, including the latest developments and applications, from preliminary research to clinical trials. The book is divided into fou
This text on viable but non-culturable organisms provides information on topics including: morphological changes; the role of membranes; genetics and genetic regulation; molecular methods for detection; as well as survival dominancy and related phenomena. The main purpose of the text is to elucidate the phenomenon and to distinguish it from other seemingly related but different phenomena such as spore formation, dormancy, starvation, and injury. It covers a cross section of morphology, metabolism, genetics, ecology and epidemiology.
All aerial plant surfaces, including leaves, stems and flowers are inhabited by diverse assemblages of microorganisms, including filamentous fungi, yeasts, bacteria, and bacteriophages. These organisms have profound effects on plant health and thus impact on ecosystem and agricultural functions. This book is based on proceedings from the 8th International Symposium on the mircobiology of aerial plant surfaces, held in Oxford 2005. This is a five yearly conference which brings together international scientists and provides a unique opportunity to discuss developments in this field.
General methodology and apparatus: phase diagrams, preparation and analysis of two-phase systems, partioning and affinity partitioning of macromolecules: Proteins, nucleic acids, studies on protein interactionsmolecular structure, charge, hydrophobicity, and conformational chan ges, partitioning and affinity partitioning of particulates,organellesseparation and subfractionation, menbrane: separation and subfractionation, membrane domain analysis, aqueous phase separation in biologicalsystems, aqueous two-phase systems in large-scale process biotechnolo gy, proteins; downstream processing, design of proteins for enhanced extraction, other applications of aqueous phases in biotechnology. Enzymology.
Providing a comprehensive insight into cellular signaling processes in bacteria with a special focus on biotechnological implications, this is the first book to cover intercellular as well as intracellular signaling and its relevance for biofilm formation, host pathogen interactions, symbiotic relationships, and photo- and chemotaxis. In addition, it deals in detail with principal bacterial signaling mechanisms -- making this a valuable resource for all advanced students in microbiology. Dr. Krämer is a world-renowned expert in intracellular signaling and its implications for biotechnology processes, while Dr. Jung is an expert on intercellular signaling and its relevance for biomedicine and agriculture.