You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is a collection of surveys on important mathematical ideas, their origin, their evolution and their impact in current research. The authors are mathematicians who are leading experts in their fields. The book is addressed to all mathematicians, from undergraduate students to senior researchers, regardless of the specialty.
Gaps and limits are two phenomena occuring in the Boolean algebra P(&ohgr;)/fin. Both were discovered by F. Hausdorff in the mid 1930's. This book aims to show how they can be used in solving several kinds of mathematical problems and to convince the reader that they are of interest in themselves. The forcing technique, which is not commonly known, is used widely in the text. A short explanation of the forcing method is given in Chapter 11. Exercises, both easy and more difficult, are given throughout the book.
Banach spaces provide a framework for linear and nonlinear functional analysis, operator theory, abstract analysis, probability, optimization and other branches of mathematics. This book introduces the reader to linear functional analysis and to related parts of infinite-dimensional Banach space theory. Key Features: - Develops classical theory, including weak topologies, locally convex space, Schauder bases and compact operator theory - Covers Radon-Nikodým property, finite-dimensional spaces and local theory on tensor products - Contains sections on uniform homeomorphisms and non-linear theory, Rosenthal's L1 theorem, fixed points, and more - Includes information about further topics and directions of research and some open problems at the end of each chapter - Provides numerous exercises for practice The text is suitable for graduate courses or for independent study. Prerequisites include basic courses in calculus and linear. Researchers in functional analysis will also benefit for this book as it can serve as a reference book.
Contains papers presented at the conference on Banach Algebras and Several Complex Variables held June 21-24, 1983, to honor Professor Charles E Rickart upon his retirement from Yale University. This work includes articles that present advances in topics related to Banach algebras, function algebras and infinite dimensional holomorphy.
This Handbook is an introduction to set-theoretic topology for students in the field and for researchers in other areas for whom results in set-theoretic topology may be relevant. The aim of the editors has been to make it as self-contained as possible without repeating material which can easily be found in standard texts. The Handbook contains detailed proofs of core results, and references to the literature for peripheral results where space was insufficient. Included are many open problems of current interest.In general, the articles may be read in any order. In a few cases they occur in pairs, with the first one giving an elementary treatment of a subject and the second one more advanced results. These pairs are: Hodel and Juhász on cardinal functions; Roitman and Abraham-Todorčević on S- and L-spaces; Weiss and Baumgartner on versions of Martin's axiom; and Vaughan and Stephenson on compactness properties.
This book, intended for postgraduate students and researchers, presents many results of historical importance on pseudocompact spaces. In 1948, E. Hewitt introduced the concept of pseudocompactness which generalizes a property of compact subsets of the real line. A topological space is pseudocompact if the range of any real-valued, continuous function defined on the space is a bounded subset of the real line. Pseudocompact spaces constitute a natural and fundamental class of objects in General Topology and research into their properties has important repercussions in diverse branches of Mathematics, such as Functional Analysis, Dynamical Systems, Set Theory and Topological-Algebraic structures. The collection of authors of this volume include pioneers in their fields who have written a comprehensive explanation on this subject. In addition, the text examines new lines of research that have been at the forefront of mathematics. There is, as yet, no text that systematically compiles and develops the extensive theory of pseudocompact spaces, making this book an essential asset for anyone in the field of topology.
This book is the result of a meeting on Topology and Functional Analysis, and is dedicated to Professor Manuel López-Pellicer's mathematical research. Covering topics in descriptive topology and functional analysis, including topological groups and Banach space theory, fuzzy topology, differentiability and renorming, tensor products of Banach spaces and aspects of Cp-theory, this volume is particularly useful to young researchers wanting to learn about the latest developments in these areas.
This volume is dedicated to Paul Erdos, who has profoundly influenced mathematics in this century, with over 1200 papers on number theory, complex analysis, probability theory, geometry, interpretation theory, algebra set theory and combinatorics. One of Erdos' hallmarks is the host of stimulating problems and conjectures, to many of which he has attached monetary prices, in accordance with their notoriety. A feature of this volume is a collection of some fifty outstanding unsolved problems, together with their "values."