Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

From Vertex Operator Algebras to Conformal Nets and Back
  • Language: en
  • Pages: 97

From Vertex Operator Algebras to Conformal Nets and Back

The authors consider unitary simple vertex operator algebras whose vertex operators satisfy certain energy bounds and a strong form of locality and call them strongly local. They present a general procedure which associates to every strongly local vertex operator algebra V a conformal net AV acting on the Hilbert space completion of V and prove that the isomorphism class of AV does not depend on the choice of the scalar product on V. They show that the class of strongly local vertex operator algebras is closed under taking tensor products and unitary subalgebras and that, for every strongly local vertex operator algebra V, the map W↦AW gives a one-to-one correspondence between the unitary subalgebras W of V and the covariant subnets of AV.

Philosophy of Physics
  • Language: en
  • Pages: 1481

Philosophy of Physics

  • Type: Book
  • -
  • Published: 2007
  • -
  • Publisher: Elsevier

The ambition of this volume is twofold: to provide a comprehensive overview of the field and to serve as an indispensable reference work for anyone who wants to work in it. For example, any philosopher who hopes to make a contribution to the topic of the classical-quantum correspondence will have to begin by consulting Klaas Landsman's chapter. The organization of this volume, as well as the choice of topics, is based on the conviction that the important problems in the philosophy of physics arise from studying the foundations of the fundamental theories of physics. It follows that there is no sharp line to be drawn between philosophy of physics and physics itself. Some of the best work in t...

Moufang Sets and Structurable Division Algebras
  • Language: en
  • Pages: 102

Moufang Sets and Structurable Division Algebras

A Moufang set is essentially a doubly transitive permutation group such that each point stabilizer contains a normal subgroup which is regular on the remaining vertices; these regular normal subgroups are called the root groups, and they are assumed to be conjugate and to generate the whole group. It has been known for some time that every Jordan division algebra gives rise to a Moufang set with abelian root groups. The authors extend this result by showing that every structurable division algebra gives rise to a Moufang set, and conversely, they show that every Moufang set arising from a simple linear algebraic group of relative rank one over an arbitrary field k of characteristic different from 2 and 3 arises from a structurable division algebra. The authors also obtain explicit formulas for the root groups, the τ-map and the Hua maps of these Moufang sets. This is particularly useful for the Moufang sets arising from exceptional linear algebraic groups.

Generalized Mercer Kernels and Reproducing Kernel Banach Spaces
  • Language: en
  • Pages: 134

Generalized Mercer Kernels and Reproducing Kernel Banach Spaces

This article studies constructions of reproducing kernel Banach spaces (RKBSs) which may be viewed as a generalization of reproducing kernel Hilbert spaces (RKHSs). A key point is to endow Banach spaces with reproducing kernels such that machine learning in RKBSs can be well-posed and of easy implementation. First the authors verify many advanced properties of the general RKBSs such as density, continuity, separability, implicit representation, imbedding, compactness, representer theorem for learning methods, oracle inequality, and universal approximation. Then, they develop a new concept of generalized Mercer kernels to construct p-norm RKBSs for 1≤p≤∞ .

Spinors on Singular Spaces and the Topology of Causal Fermion Systems
  • Language: en
  • Pages: 96

Spinors on Singular Spaces and the Topology of Causal Fermion Systems

Causal fermion systems and Riemannian fermion systems are proposed as a framework for describing non-smooth geometries. In particular, this framework provides a setting for spinors on singular spaces. The underlying topological structures are introduced and analyzed. The connection to the spin condition in differential topology is worked out. The constructions are illustrated by many simple examples such as the Euclidean plane, the two-dimensional Minkowski space, a conical singularity, a lattice system as well as the curvature singularity of the Schwarzschild space-time. As further examples, it is shown how complex and Kähler structures can be encoded in Riemannian fermion systems.

Mathematical Physics in Mathematics and Physics
  • Language: en
  • Pages: 477

Mathematical Physics in Mathematics and Physics

The beauty and the mystery surrounding the interplay between mathematics and physics is captured by E. Wigner's famous expression, ``The unreasonable effectiveness of mathematics''. We don't know why, but physical laws are described by mathematics, and good mathematics sooner or later finds applications in physics, often in a surprising way. In this sense, mathematical physics is a very old subject-as Egyptian, Phoenician, or Greek history tells us. But mathematical physics is a very modern subject, as any working mathematician or physicist can witness. It is a challenging discipline that has to provide results of interest for both mathematics and physics. Ideas and motivations from both the...

CR Embedded Submanifolds of CR Manifolds
  • Language: en
  • Pages: 94

CR Embedded Submanifolds of CR Manifolds

The authors develop a complete local theory for CR embedded submanifolds of CR manifolds in a way which parallels the Ricci calculus for Riemannian submanifold theory. They define a normal tractor bundle in the ambient standard tractor bundle along the submanifold and show that the orthogonal complement of this bundle is not canonically isomorphic to the standard tractor bundle of the submanifold. By determining the subtle relationship between submanifold and ambient CR density bundles the authors are able to invariantly relate these two tractor bundles, and hence to invariantly relate the normal Cartan connections of the submanifold and ambient manifold by a tractor analogue of the Gauss fo...

Extended States for the Schrödinger Operator with Quasi-Periodic Potential in Dimension Two
  • Language: en
  • Pages: 152

Extended States for the Schrödinger Operator with Quasi-Periodic Potential in Dimension Two

The authors consider a Schrödinger operator H=−Δ+V(x⃗ ) in dimension two with a quasi-periodic potential V(x⃗ ). They prove that the absolutely continuous spectrum of H contains a semiaxis and there is a family of generalized eigenfunctions at every point of this semiaxis with the following properties. First, the eigenfunctions are close to plane waves ei⟨ϰ⃗ ,x⃗ ⟩ in the high energy region. Second, the isoenergetic curves in the space of momenta ϰ⃗ corresponding to these eigenfunctions have the form of slightly distorted circles with holes (Cantor type structure). A new method of multiscale analysis in the momentum space is developed to prove these results. The result is based on a previous paper on the quasiperiodic polyharmonic operator (−Δ)l+V(x⃗ ), l>1. Here the authors address technical complications arising in the case l=1. However, this text is self-contained and can be read without familiarity with the previous paper.

On Space-Time Quasiconcave Solutions of the Heat Equation
  • Language: en
  • Pages: 94

On Space-Time Quasiconcave Solutions of the Heat Equation

In this paper the authors first obtain a constant rank theorem for the second fundamental form of the space-time level sets of a space-time quasiconcave solution of the heat equation. Utilizing this constant rank theorem, they obtain some strictly convexity results of the spatial and space-time level sets of the space-time quasiconcave solution of the heat equation in a convex ring. To explain their ideas and for completeness, the authors also review the constant rank theorem technique for the space-time Hessian of space-time convex solution of heat equation and for the second fundamental form of the convex level sets for harmonic function.

Geodesics, Retracts, and the Norm-Preserving Extension Property in the Symmetrized Bidisc
  • Language: en
  • Pages: 122

Geodesics, Retracts, and the Norm-Preserving Extension Property in the Symmetrized Bidisc

A set V in a domain U in Cn has the norm-preserving extension property if every bounded holomorphic function on V has a holomorphic extension to U with the same supremum norm. We prove that an algebraic subset of the symmetrized bidisc