You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Control the development of polymer crystals with this groundbreaking introduction Polymer crystallization is a crucial component of polymer development that impacts processing, applications, presentation, and more. Intervention in the polymer crystallization process, in the form of nanofilters, compatibilizers, and more, has the potential to improve optical and chemical properties, improve degrees of crystallinity, and increase hardness of polymer composites. The myriad applications of crystalline polymers make this one of the most exciting and fast-growing fields in polymer research. Polymer Crystallization provides a comprehensive introduction to this field and its most important recent de...
Natural Fiber-Reinforced Composites In-depth overview of thermal analysis of natural fiber-reinforced composites In Natural Fiber-Reinforced Composites: Thermal Properties and Applications, a team of distinguished researchers has delivered a comprehensive overview of the thermal properties of natural fiber-reinforced polymer composites. The book brings together information currently dispersed throughout the scientific literature and offers viable and environmentally friendly alternatives to conventional composites. The book highlights the thermal analysis of natural fiber-reinforced composites with techniques such as Thermogravimetric Analysis, Dynamic Mechanical Analysis, Thermomechanical A...
This book comprehensively covers the different topics of wood polymer composite materials mainly synthesis methods for the composite materials, various characterization techniques to study the superior properties and insights on potential advanced applications. It also discusses the chemistry, fabrication process, properties, applications, recycling and life cycle assessment of wood polymer composites. This is a useful reference source for both engineers and researchers working in composite materials science as well as the students attending materials science, physics, chemistry and engineering courses.
Epoxy-Based Biocomposites highlights the influence of fibre type, nanofillers, and ageing conditions on the performance of epoxy-based biocomposites subjected to various loading conditions. This book serves as a useful reference for researchers, graduate students, and engineers in the field of polymer composites. In addition to investigating the behaviour of hybrid biocomposites and biocomposites reinforced with various nanofillers, this book discusses the response of epoxy-based biocomposites exposed to moisture absorption, accelerated weathering, and hygrothermal ageing. This book also considers the static and dynamic properties, such as creep, fatigue, and free vibration properties.
A composite sandwich panel is a hybrid material made up of constituents such as a face sheet, a core, and adhesive film for bonding the face sheet and core together. Advances in materials have provided designers with several choices for developing sandwich structures with advanced functionalities. The selection of a material in the sandwich construction is based on the cost, availability, strength requirements, ease of manufacturing, machinability, and post-manufacturing process requirements. Sandwich Composites: Fabrication and Characterization provides insights into composite sandwich panels based on the material aspects, mechanical properties, defect characterization, and secondary proces...
Lightweight and Sustainable Composites Materials: Preparation, Properties and Applications focuses on the synthesis, processing and characterization of these materials, their environmental sustainability features, compatibility with composites and their broad range of commercial and industrial application fields. The combination of being both lightweight and sustainable results in unique properties that make them suitable for a broad range of advanced commercial engineering applications. The book will be a valuable reference resource for academic and industrial researchers and material scientists and engineers working in the development of lightweight and sustainable composite materials. As ...
Electrospinning is a versatile method to synthesize fiber materials. Electrospun Nanofibres: Materials, Methods, and Applications explores the technical aspects of electrospinning methods used to derive a wide range of functional fiber materials and their applications in various technical sectors. As electrospinning is a process that can be modified strategically to achieve different fibers of interest, this book covers the wide spectrum of electrospinning methodologies, such as coaxial, triaxial, emulsion, suspension, electrolyte and gas-assisted spinning processes. It: • Discusses a broad range of materials, including synthetic polymers, biodegradable polymers, metals and their oxides, hybrid materials, nonpolymers, and more. • Reviews different electrospinning methods and combined technologies. • Describes process-related parameters and their influence on material properties and performance. • Examines modeling of the electrospinning process. • Highlights applications across different industries. This book is aimed at researchers, professionals, and advanced students in materials science and engineering.
Having a solid understanding of materials recycling is of high importance, especially due to the growing use of composites in many industries and increasingly strict legislation and concerns about the disposal of composites in landfills or by incineration. Recycling of Plastics, Metals, and Their Composites provides a comprehensive review of the recycling of waste polymers and metal composites. It provides the latest advances and covers the fundamentals of recycled polymers and metal composites, such as preparation, morphology, and physical, mechanical, thermal, and flame-retardancy properties. FEATURES Offers a state-of-the-art review of the recycling of polymer composites and metal composi...
This book provides information on the basics of deformation and fracture in materials and on current, state-of-the-art experimental and numerical/theoretical methods, including data-driven approaches in the deformation and fracture study of materials. The blend of experimental test methods and numerical techniques to study deformation and fracture in materials is discussed. In addition, the application of data-driven approaches in predicting material performance in different types of loading and loading environments is illustrated. Features: Includes clear insights on deformation and fracture in materials, with clear explanations of mechanics and defects relating to them Provides effective treatments of modern numerical simulation methods Explores applications of data-driven approaches such as artificial intelligence, machine learning, and computer vision Reviews simple and basic experimental techniques to understand the concepts of deformation and fracture in materials Details modeling and simulation strategies of mechanics of materials at different scales This book is aimed at researchers and graduate students in fracture mechanics, finite element methods, and materials science.