Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Simplicial Methods for Higher Categories
  • Language: en
  • Pages: 353

Simplicial Methods for Higher Categories

  • Type: Book
  • -
  • Published: 2019-06-03
  • -
  • Publisher: Springer

This monograph presents a new model of mathematical structures called weak n-categories. These structures find their motivation in a wide range of fields, from algebraic topology to mathematical physics, algebraic geometry and mathematical logic. While strict n-categories are easily defined in terms associative and unital composition operations they are of limited use in applications, which often call for weakened variants of these laws. The author proposes a new approach to this weakening, whose generality arises not from a weakening of such laws but from the very geometric structure of its cells; a geometry dubbed weak globularity. The new model, called weakly globular n-fold categories, i...

Towards Higher Categories
  • Language: en
  • Pages: 292

Towards Higher Categories

This IMA Volume in Mathematics and its Applications TOWARDS HIGHER CATEGORIES contains expository and research papers based on a highly successful IMA Summer Program on n-Categories: Foundations and Applications. We are grateful to all the participants for making this occasion a very productive and stimulating one. We would like to thank John C. Baez (Department of Mathematics, University of California Riverside) and J. Peter May (Department of Ma- ematics, University of Chicago) for their superb role as summer program organizers and editors of this volume. We take this opportunity to thank the National Science Foundation for its support of the IMA. Series Editors Fadil Santosa, Director of ...

Homotopy Theory of Higher Categories
  • Language: en
  • Pages: 653

Homotopy Theory of Higher Categories

The study of higher categories is attracting growing interest for its many applications in topology, algebraic geometry, mathematical physics and category theory. In this highly readable book, Carlos Simpson develops a full set of homotopical algebra techniques and proposes a working theory of higher categories. Starting with a cohesive overview of the many different approaches currently used by researchers, the author proceeds with a detailed exposition of one of the most widely used techniques: the construction of a Cartesian Quillen model structure for higher categories. The fully iterative construction applies to enrichment over any Cartesian model category, and yields model categories for weakly associative n-categories and Segal n-categories. A corollary is the construction of higher functor categories which fit together to form the (n+1)-category of n-categories. The approach uses Tamsamani's definition based on Segal's ideas, iterated as in Pelissier's thesis using modern techniques due to Barwick, Bergner, Lurie and others.

Women in Topology
  • Language: en
  • Pages: 178

Women in Topology

This volume contains the proceedings of the WIT: Women in Topology workshop, held from August 18-23, 2013, at the Banff International Research Station, Banff, Alberta, Canada. The Women in Topology workshop was devoted primarily to active collaboration by teams of five to seven participants, each including senior and junior researchers, as well as graduate students. This volume contains papers based on the results obtained by team projects in homotopy theory, including -infinity structures, equivariant homotopy theory, functor calculus, model categories, orbispaces, and topological Hochschild homology.

Interactions between Homotopy Theory and Algebra
  • Language: en
  • Pages: 352

Interactions between Homotopy Theory and Algebra

This book is based on talks presented at the Summer School on Interactions between Homotopy theory and Algebra held at the University of Chicago in the summer of 2004. The goal of this book is to create a resource for background and for current directions of research related to deep connections between homotopy theory and algebra, including algebraic geometry, commutative algebra, and representation theory. The articles in this book are aimed at the audience of beginning researchers with varied mathematical backgrounds and have been written with both the quality of exposition and the accessibility to novices in mind.

Categories in Algebra, Geometry and Mathematical Physics
  • Language: en
  • Pages: 482

Categories in Algebra, Geometry and Mathematical Physics

Category theory has become the universal language of modern mathematics. This book is a collection of articles applying methods of category theory to the areas of algebra, geometry, and mathematical physics. Among others, this book contains articles on higher categories and their applications and on homotopy theoretic methods. The reader can learn about the exciting new interactions of category theory with very traditional mathematical disciplines.

Gazette - Australian Mathematical Society
  • Language: en
  • Pages: 396

Gazette - Australian Mathematical Society

  • Type: Book
  • -
  • Published: 2008
  • -
  • Publisher: Unknown

None

Topology and Field Theories
  • Language: en
  • Pages: 186

Topology and Field Theories

This book is a collection of expository articles based on four lecture series presented during the 2012 Notre Dame Summer School in Topology and Field Theories. The four topics covered in this volume are: Construction of a local conformal field theory associated to a compact Lie group, a level and a Frobenius object in the corresponding fusion category; Field theory interpretation of certain polynomial invariants associated to knots and links; Homotopy theoretic construction of far-reaching generalizations of the topological field theories that Dijkgraf and Witten associated to finite groups; and a discussion of the action of the orthogonal group on the full subcategory of an -category consisting of the fully dualizable objects. The expository style of the articles enables non-experts to understand the basic ideas of this wide range of important topics.

Handbook of Homotopy Theory
  • Language: en
  • Pages: 982

Handbook of Homotopy Theory

  • Type: Book
  • -
  • Published: 2020-01-23
  • -
  • Publisher: CRC Press

The Handbook of Homotopy Theory provides a panoramic view of an active area in mathematics that is currently seeing dramatic solutions to long-standing open problems, and is proving itself of increasing importance across many other mathematical disciplines. The origins of the subject date back to work of Henri Poincaré and Heinz Hopf in the early 20th century, but it has seen enormous progress in the 21st century. A highlight of this volume is an introduction to and diverse applications of the newly established foundational theory of ¥ -categories. The coverage is vast, ranging from axiomatic to applied, from foundational to computational, and includes surveys of applications both geometric and algebraic. The contributors are among the most active and creative researchers in the field. The 22 chapters by 31 contributors are designed to address novices, as well as established mathematicians, interested in learning the state of the art in this field, whose methods are of increasing importance in many other areas.

Alpine Perspectives on Algebraic Topology
  • Language: en
  • Pages: 274

Alpine Perspectives on Algebraic Topology

Contains the proceedings of the Third Arolla Conference on Algebraic Topology, which took place in Arolla, Switzerland, on August 18-24, 2008. This title includes research papers on stable homotopy theory, the theory of operads, localization and algebraic K-theory, as well as survey papers on the Witten genus and localization techniques.