You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Advanced Nanomaterials and Nanocomposites for Bioelectrochemical Systems covers advancements in nanomaterial and nanocomposite applications for microbial fuel cells. One of the advantages of using microbial fuel cells is the simultaneous treatment of wastewater and the generation of electricity from complex organic waste and biomass, which demonstrates that microbial fuel cells are an active area of frontier research. The addition of microorganisms is essential to enhance the reaction kinetics. This type of fuel cell helps to convert complex organic waste into useful energy through the metabolic activity of microorganisms, thereby generating energy. By incorporating nano-scale fillers into t...
Water is the most vital substance in every aspect of life, and its contamination because of the activity of mankind poses a big global challenge. Addressing this issue for drinking purposes and environmental protection is the current big issue. Many research groups worldwide have been working on effective treatment technologies based on nanomaterials during the last two decades. Water and wastewater treatment by nanomaterial-based technologies has become an aid in finding possible solutions for contaminated wastewater released from various water sources. Nanoscale materials can be seen to take on unique and unpredictable properties that make them more robust, flexible, lighter, and faster, a...
Over the last decade considerable progress has been made in white biotechnology research and further major scientific and technological breakthroughs are expected in the future. The first large-scale industrial applications of modern biotechnology have been in the areas of food and animal feed production (agricultural/green biotechnology) and in pharmaceuticals (medical/red biotechnology). In contrast, the productions of bioactive compounds through fermentation or enzymatic conversion are known as industrial or white biotchnology. The fungi are ubiquitous in nature and have been sorted out from different habitats, including extreme environments (high temperature, low temperature, salinity an...
Medicinal plant-based synthesis of nanoparticles from various extracts is easy, safe, and eco-friendly. Medicinal and herbal plants are the natural source of medicines, mainly due to the presence of secondary metabolites, and have been used as medicine since ancient times. Secondary Metabolites from Medicinal Plants: Nanoparticles Synthesis and their Applications provides an overview on medicinal plant-based secondary metabolites and their use in the synthesis of different types of nanoparticles. It explores trends in growth, characterization, properties, and applications of nanoparticles from secondary metabolites including terpenoids, alkaloids, flavonoids, and phenolic compounds. It also explains the opportunities and future challenges of secondary metabolites in nanoparticle synthesis. Nanotechnology is a burgeoning research field, and due to its widespread application in almost every branch of science and technology, it creates many new opportunities. As part of the Exploring Medicinal Plants series, this book will be of huge benefit to plant scientists and researchers as well as graduates, postgraduates, researchers, and consultants working in the field of nanoparticles.
This book puts an updated account on functional aspects of multiphasic microbial interactions within and between plants and their ecosystem. Multipronged interaction in the soil microbial communities with the plants constitute a relay of mechanisms that make profound changes in plant and its micro-environment in the rhizopshere at physiological, biochemical and molecular levels. In agro-ecological perspectives, such interactions are known to recycle nutrients and regulate signalling molecules, phytohormones and other small molecules that help plant growth and development. Such aspects are described deeply in this book taking examples from various crop plants and microbial systems. Authors de...
Extensive industrialization has led to an increased release of toxic metals into the soil and air. Industrial waste can include mine overburden, bauxite residue, and E waste, and these can serve as a source of valuable recoverable metals. There are relatively simple methods to recycle these wastes, but they require additional chemicals, are expensive, and generate secondary waste that causes environmental pollution. Biohydrometallurgical processing is a cost-effective and ecofriendly alternative where biological processes help conserve dwindling ore resources and extract metals in a nonpolluting way. Microbes can be used in metal extraction from primary ores, waste minerals, and industrial a...
This book collates various aspects of stress tolerance in crop plants. It primarily focuses on the heat and temperature related stress, starting from the severity of the problem on quantity and quality of yield under the threat of global climate change. The content also explores other mechanistic dimensions such as physiochemical and molecular mechanism underlying thermotolerance, signaling mechanism under heat stress, role of heat shock proteins in modulating thermotolerance, omics approach for development of climate smart-crop. Chapters discuss different approaches used in the past to develop heat stress tolerant crop plants, list of developed thermotolerant agriculturally important crop plants, redox homeostasis under heat stress, nutrient uptake and use efficiency in plants under heat stress and much more. The book is a useful compilation for researchers working in the area of abiotic stress tolerance in crop plants, as well as for students of plant physiology and agricultural sciences.
Environmental contamination of heavy metals is a major problem, threatening sustainable agricultural production and health of millions of people. The extensive distribution of heavy metals in soil and water makes it necessary to employ environment-friendly low-cost and sustainable approaches for the remediation of contaminated sites. Phytoremediation has been considered a viable approach to meet these demands; however, it must provide some economic gains too. The use of economically important medicinal and aromatic plants is helpful in restoration of metal-contaminated sites and also may provide economic gains to the farmers. The book brings about a critical overview of the prospects of util...
This book covers the contemporary environmental issues faced by life on the planet and the role planetary microbiomes play in such issues. Providing insights on the net favorable and adverse effect of microbial processes, this volume covers both the spontaneous and anthropocentric events that impact climate change and life on the planet. The book describes the ecological significance of microbiomes associated with the kingdoms Plantae and Animalia with respect to climate change, natural and anthropogenic causes of climate change, microbial interactions in nature, planetary microbiomes and food security, climate change in relation to disease epidemiology and human health and engineering microorganisms to mitigate the consequences of climate change. The individual chapters in the intended book provide both theoretical and practical exposure to the current issues and future challenges of climate change in relation to the microbiomes. This collection should serve as ready reference to the researchers working in the area to reshape their future research in addressing the challenges of global climate change.