Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Modeling transport properties and electrochemical performance of hierarchically structured lithium-ion battery cathodes using resistor networks and mathematical half-cell models
  • Language: en
  • Pages: 246

Modeling transport properties and electrochemical performance of hierarchically structured lithium-ion battery cathodes using resistor networks and mathematical half-cell models

Hierarchically structured active materials in electrodes of lithium-ion cells are promising candidates for increasing gravimetric energy density and improving rate capability of the system. To investigate the influence of cathode structures on the performance of the whole cell, efficient tools for calculating effective transport properties of granular systems are developed and their influence on the electrochemical performance is investigated in specially adapted cell models.

Characterization and Modeling of the Ratcheting Behavior of the Ferritic-Martensitic Steel P91
  • Language: en
  • Pages: 224

Characterization and Modeling of the Ratcheting Behavior of the Ferritic-Martensitic Steel P91

In this work, the ratcheting-behavior of 9%Cr-1%Mo ferritic-martensitic steel is studied with uniaxial cyclic loading. To describe the ratcheting-behavior of this steel, a visco-plastic constitutive model with consideration of cyclic softening of Reduced Activation Ferritic Martensitic steels is further modified, based on the analysis of back stress.

Characterisation and Modelling of Continuous-Discontinuous Sheet Moulding Compound Composites for Structural Applications
  • Language: en
  • Pages: 468

Characterisation and Modelling of Continuous-Discontinuous Sheet Moulding Compound Composites for Structural Applications

The main objective of this work is to significantly deepen the understanding of the material and the structural behaviour of continuous-discontinuous SMC composites, following a holistic approach to investigate microscopic aspects, macroscopic mechanical behaviour as well as failure evolution at the coupon, structure and component level. In addition, criteria to evaluate the effect of hybridisation are introduced and modelling approaches are presented and discussed.

Consequences of hydroxyl generation by the silica/water reaction - Part II: Global and local Swelling - Part III: Damage and Young's Modulus
  • Language: en
  • Pages: 226

Consequences of hydroxyl generation by the silica/water reaction - Part II: Global and local Swelling - Part III: Damage and Young's Modulus

Water diffusing into silica surfaces gives rise for several effects on diffusion behaviour and mechanical properties. In a preceding booklet, we focused on diffusion and fiber strengths and deformations which were obtained by water soaking under external loading. In the present booklet we deal with results and interpretations of strength increase in the absence of applied stresses.

Microstructural Stability of Nanostructured Fcc Metals During Cyclic Deformation and Fatigue
  • Language: en
  • Pages: 218

Microstructural Stability of Nanostructured Fcc Metals During Cyclic Deformation and Fatigue

Nanostructured metals with maximal grain or twin sizes of less than 100 nm have advanced properties like increased strength.As beneficial as these microstructures can be for the strength of materials, they are not infinitely stable. During mechanical loading these metals tend to coarsen and lose their beneficial structure. Besides electron microscopic analysis of fatigued samples, in situ cycling tests were conducted in order to observe structural degradation during mechanical loading.

Fluid Flow and Heat Transfer in Cellular Solids
  • Language: en
  • Pages: 278

Fluid Flow and Heat Transfer in Cellular Solids

To determine the characteristics and properties of cellular solids for an application, and to allow a systematic practical use by means of correlations and modelling approaches, we perform experimental investigations and develop numerical methods. In view of coupled multi-physics simulations, we employ the phase-field method. Finally, the applicability is demonstrated exemplarily for open-cell metal foams, providing qualitative and quantitative comparison with experimental data.

A novel micro-mechanical model for prediction of multiaxial high cycle fatigue at small scales
  • Language: en
  • Pages: 142

A novel micro-mechanical model for prediction of multiaxial high cycle fatigue at small scales

The grain microstructure and damage mechanisms at the grain level are the key factors that influence fatigue of metals at small scales. This is addressed in this work by establishing a new micro-mechanical model for prediction of multiaxial high cycle fatigue (HCF) at a length scale of 5-100?m. The HCF model considers elasto-plastic behavior of metals at the grain level and microstructural parameters, specifically the grain size and the grain orientation.

On the structure-property correlation and the evolution of Nanofeatures in 12-13.5% Cr oxide dispersion strengthened ferritic steels
  • Language: en
  • Pages: 236

On the structure-property correlation and the evolution of Nanofeatures in 12-13.5% Cr oxide dispersion strengthened ferritic steels

Main objective of this work is to develop, by systematic variation of the chemical composition, and TMP, 14% Cr nano-structured ferritic alloys with significantly improved high-temperature properties compared to currently available ODS alloys. Application of state-of-the-art characterization tools shall lead to an integrated understanding of structure-property correlation and the formation mechanism of nanoparticles.

Phase-field Modeling of Phase Changes and Mechanical Stresses in Electrode Particles of Secondary Batteries
  • Language: en
  • Pages: 224

Phase-field Modeling of Phase Changes and Mechanical Stresses in Electrode Particles of Secondary Batteries

Most storage materials exhibit phase changes, which cause stresses and, thus, lead to damage of the electrode particles. In this work, a phase-field model for the cathode material NaxFePO4 of Na-ion batteries is studied to understand phase changes and stress evolution. Furthermore, we study the particle size and SOC dependent miscibility gap of the nanoscale insertion materials. Finally, we introduce the nonlocal species concentration theory, and show how the nonlocality influences the results.