You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
First multi-year cumulation covers six years: 1965-70.
Applied Nonlinear Analysis contains the proceedings of an International Conference on Applied Nonlinear Analysis, held at the University of Texas at Arlington, on April 20-22, 1978. The papers explore advances in applied nonlinear analysis, with emphasis on reaction-diffusion equations; optimization theory; constructive techniques in numerical analysis; and applications to physical and life sciences. In the area of reaction-diffusion equations, the discussions focus on nonlinear oscillations; rotating spiral waves; stability and asymptotic behavior; discrete-time models in population genetics; and predator-prey systems. In optimization theory, the following topics are considered: inverse and...
Differential Equations and Applications in Ecology, Epidemics, and Population Problems is composed of papers and abstracts presented at the 1981 research conference on Differential Equations and Applications to Ecology, Epidemics, and Population Problems held at Harvey Mudd College. The reported researches consist of mathematics that is either a direct outgrowth from questions in population biology and biomathematics, or applicable to such questions. The content of this volume are collected in four groups. The first group addresses aspects of population dynamics that involve the interaction between spatial and temporal effects. The second group covers other questions in population dynamics a...
This volume is dedicated to the memory of Professor Stavros Busenberg of Harvey Mudd College, who contributed so greatly to this field during 25 years prior to his untimely death. It contains about 60 invited papers by leading researchers in the areas of dynamical systems, mathematical studies in ecology, epidemics, and physiology, and industrial mathematics. Anyone interested in these areas will find much of value in these contributions.
This book contains twenty four papers, presented at the conference on Volterra and Functional Differential Equations held in Virginia in 1981, on various topics, including Liapunov stability, Volterra equations, integral equations, and functional differential equations.
Volume 1: Deterministic Modeling, Methods and Analysis For more than half a century, stochastic calculus and stochastic differential equations have played a major role in analyzing the dynamic phenomena in the biological and physical sciences, as well as engineering. The advancement of knowledge in stochastic differential equations is spreading rapidly across the graduate and postgraduate programs in universities around the globe. This will be the first available book that can be used in any undergraduate/graduate stochastic modeling/applied mathematics courses and that can be used by an interdisciplinary researcher with a minimal academic background. An Introduction to Differential Equations: Volume 2 is a stochastic version of Volume 1 (“An Introduction to Differential Equations: Deterministic Modeling, Methods and Analysis”). Both books have a similar design, but naturally, differ by calculi. Again, both volumes use an innovative style in the presentation of the topics, methods and concepts with adequate preparation in deterministic Calculus. Errata Errata (32 KB)
This book is an outcome of the Second International Conference on Mathematical Population Dynamics. It is intended for mathematicians, statisticians, biologists, and medical researchers who are interested in recent advances in analyzing changes in populations of genes, cells, and tumors.
This book grew out of the discussions and presentations that began during the Workshop on Emerging and Reemerging Diseases (May 17-21, 1999) sponsored by the Institute for Mathematics and its Application (IMA) at the University of Minnesota with the support of NIH and NSF. The workshop started with a two-day tutorial session directed at ecologists, epidemiologists, immunologists, mathematicians, and scientists interested in the study of disease dynamics. The core of this first volume, Volume 125, covers tutorial and research contributions on the use of dynamical systems (deterministic discrete, delay, PDEs, and ODEs models) and stochastic models in disease dynamics. The volume includes the study of cancer, HIV, pertussis, and tuberculosis. Beginning graduate students in applied mathematics, scientists in the natural, social, or health sciences or mathematicians who want to enter the fields of mathematical and theoretical epidemiology will find this book useful.
This volume is dedicated to the memory of Professor Stavros Busenberg of Harvey Mudd College, who contributed so greatly to this field during 25 years prior to his untimely death. It contains about 60 invited papers by leading researchers in the areas of dynamical systems, mathematical studies in ecology, epidemics, and physiology, and industrial mathematics. Anyone interested in these areas will find much of value in these contributions.