You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
How does your mind work? How does your brain give rise to your mind? These are questions that all of us have wondered about at some point in our lives, if only because everything that we know is experienced in our minds. They are also very hard questions to answer. After all, how can a mind understand itself? How can you understand something as complex as the tool that is being used to understand it? This book provides an introductory and self-contained description of some of the exciting answers to these questions that modern theories of mind and brain have recently proposed. Stephen Grossberg is broadly acknowledged to be the most important pioneer and current research leader who has, for ...
the mass of experimental data from current research in psychology and physiology, Grossberg proposes and develops a non-linear mathematics as a model for specific functions of mind and brain. He finds the classic approach to the mathematical modelling of mind and brain systematically inadequate. This inadequacy, he holds, arises from the attempt to describe adaptive systems in the mathematical language of 9 physics developed to describe "stationary", i. e. non-adaptive and non-evolving systems. In place of this linear mathematics, Grossberg develops his non-linear approach. His method is at once imaginative, rigorous, and philosophically significant: it is the thought experiment. It is here that the richness of his interdisciplinary mastery, and the power of his methods, constructions and proofs, reveal themselves. The method is what C. S. Peirce characterized as the method of abduction, or of hypothetical inference in theory construction: given the output of the system as a psychological phenomenon (e. g.
Pattern Recognition by Self-Organizing Neural Networks presentsthe most recent advances in an area of research that is becoming vitally important in the fields ofcognitive science, neuroscience, artificial intelligence, and neural networks in general. The 19articles take up developments in competitive learning and computational maps, adaptive resonancetheory, and specialized architectures and biological connections. Introductorysurvey articles provide a framework for understanding the many models involved in various approachesto studying neural networks. These are followed in Part 2 by articles that form the foundation formodels of competitive learning and computational mapping, and recent a...
Surprising tales from the scientists who first learned how to use computers to understand the workings of the human brain. Since World War II, a group of scientists has been attempting to understand the human nervous system and to build computer systems that emulate the brain's abilities. Many of the early workers in this field of neural networks came from cybernetics; others came from neuroscience, physics, electrical engineering, mathematics, psychology, even economics. In this collection of interviews, those who helped to shape the field share their childhood memories, their influences, how they became interested in neural networks, and what they see as its future. The subjects tell stori...
Mathematical Psychology and Psychophysiology promotes an understanding of the mind and its neural substrates by applying interdisciplinary approaches to issues concerning behavior and the brain. The contributions present model from many disciplines that share common, conceptual, functional, or mechanistic substrates and summarize recent models and data from neural networks, mathematical genetics, psychoacoustics, olfactory coding, visual perception, measurement, psychophysics, cognitive development, and other areas. The contributors to Mathematical Psychology and Psychophysiology show the conceptual and mathematical interconnectedness of several approaches to the fundamental scientific problem of understanding mind and brain. The book's interdisciplinary approach permits a deeper understanding of theoretical advances as it formally structures a broad overview of the data.
In a simple and accessible way it extends embedding field theory into areas of machine intelligence that have not been clearly dealt with before. Neural Networks for Pattern Recognition takes the pioneering work in artificial neural networks by Stephen Grossberg and his colleagues to a new level. In a simple and accessible way it extends embedding field theory into areas of machine intelligence that have not been clearly dealt with before. Following a tutorial of existing neural networks for pattern classification, Nigrin expands on these networks to present fundamentally new architectures that perform realtime pattern classification of embedded and synonymous patterns and that will aid in t...
This volume presents the most up-to-date collection of neural network models of music and creativity gathered together in one place. Chapters by leaders in the field cover new connectionist models of pitch perception, tonality, musical streaming, sequential and hierarchical melodic structure, composition, harmonization, rhythmic analysis, sound generation, and creative evolution. The collection combines journal papers on connectionist modeling, cognitive science, and music perception with new papers solicited for this volume. It also contains an extensive bibliography of related work. Contributors Shumeet Baluja, M.I. Bellgard, Michael A. Casey, Garrison W. Cottrell, Peter Desain, Robert O. Gjerdingen, Mike Greenhough, Niall Griffith, Stephen Grossberg, Henkjan Honing, Todd Jochem, Bruce F. Katz, John F. Kolen, Edward W. Large, Michael C. Mozer, Michael P.A. Page, Caroline Palmer, Jordan B. Pollack, Dean Pomerleau, Stephen W. Smoliar, Ian Taylor, Peter M. Todd, C.P. Tsang, Gregory M. Werner
Two neuroscientists reveal why consciousness exists and how it works by examining eighteen increasingly intelligent minds, from microbes to humankind—and beyond. Why do you exist? How did atoms and molecules transform into sentient creatures that experience longing, regret, compassion, and even marvel at their own existence? What does it truly mean to have a mind—to think? Science has offered few answers to these existential questions until now. Journey of the Mind is the first book to offer a unified account of the mind that explains how consciousness, language, self-awareness, and civilization arose incrementally out of chaos. The journey begins three billion years ago with the emergen...
Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Int...
This comprehensive encyclopedia, in A-Z format, provides easy access to relevant information for those seeking entry into any aspect within the broad field of Machine Learning. Most of the entries in this preeminent work include useful literature references.