You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The aim of this book is to provide an overview on the importance of stoichiometry in the materials science field. It presents a collection of selected research articles and reviews providing up-to-date information related to stoichiometry at various levels. Being materials science an interdisciplinary area, the book has been divided in multiple sections, each for a specific field of applications. The first two sections introduce the role of stoichiometry in nanotechnology and defect chemistry, providing examples of state-of-the-art technologies. Section three and four are focused on intermetallic compounds and metal oxides. Section five describes the importance of stoichiometry in electrochemical applications. In section six new strategies for solid phase synthesis are reported, while a cross sectional approach to the influence of stoichiometry in energy production is the topic of the last section. Though specifically addressed to readers with a background in physical science, I believe this book will be of interest to researchers working in materials science, engineering and technology.
All life is chemical. That fact underpins the developing field of ecological stoichiometry, the study of the balance of chemical elements in ecological interactions. This long-awaited book brings this field into its own as a unifying force in ecology and evolution. Synthesizing a wide range of knowledge, Robert Sterner and Jim Elser show how an understanding of the biochemical deployment of elements in organisms from microbes to metazoa provides the key to making sense of both aquatic and terrestrial ecosystems. After summarizing the chemistry of elements and their relative abundance in Earth's environment, the authors proceed along a line of increasing complexity and scale from molecules to...
Originally published in 1985, this textbook provides a thorough and comprehensive coverage of a wide range of topics in stoichiometry and thermodynamics with special emphasis on applications to metallurgical processes. This book will be welcomed as a text for courses in elementary and advanced thermodynamics and stoichiometry.
None
None
The aim of this book is to provide an overview of the importance of stoichiometry in the biomedical field. It proposes a collection of selected research articles and reviews which provide up-to-date information related to stoichiometry at various levels. The first section deals with host-guest chemistry, focusing on selected calixarenes, cyclodextrins and crown ethers derivatives. In the second and third sections the book presents some issues concerning stoichiometry of metal complexes and lipids and polymers architecture. The fourth section aims to clarify the role of stoichiometry in the determination of protein interactions, while in the fifth section some selected experimental techniques applied to specific systems are introduced. The last section of the book is an attempt at showing some interesting connections between biomedicine and the environment, introducing the concept of biological stoichiometry. On this basis, the present volume would definitely be an ideal source of scientific information to researchers and scientists involved in biomedicine, biochemistry and other areas involving stoichiometry evaluation.
Ecological stoichiometry concerns the way that the elemental composition of organisms shapes their ecology. It deals with the balance or imbalance of elemental ratios and how that affects organism growth, nutrient cycling, and the interactions with the biotic and abiotic worlds. The elemental composition of organisms is a set of constraints through which all the Earth’s biogeochemical cycles must pass. All organisms consume nutrients and acquire compounds from the environment proportional to their needs. Organismal elemental needs are determined in turn by the energy required to live and grow, the physical and chemical constraints of their environment, and their requirements for relatively...
This textbook is designed for undergraduate courses in chemical engineering and related disciplines such as biotechnology, polymer technology, petrochemical engineering, electrochemical engineering, environmental engineering, safety engineering and industrial chemistry. The chief objective of this text is to prepare students to make analysis of chemical processes through calculations and also to develop in them systematic problem-solving skills. The students are introduced not only to the application of law of combining proportions to chemical reactions (as the word ‘stoichiometry’ implies) but also to formulating and solving material and energy balances in processes with and without che...