You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In the implementation of smart cities, sensors and actuators that produce and consume enormous amounts of data in a variety of formats and ontologies will be incorporated into the system as a whole. The data produced by the participating devices need to be adequately categorized and connected to reduce duplication and conflicts. Newer edge computing techniques are needed to manage enormous amounts of data quickly and avoid overloading the cloud infrastructure. Cyber-Physical System Solutions for Smart Cities considers the most recent developments in several crucial software services and cyber infrastructures that are important to smart cities. Covering key topics such as artificial intelligence, smart data, big data, and computer science, this premier reference source is ideal for industry professionals, government officials, policymakers, scholars, researchers, academicians, instructors, and students.
Recent advancements in graph neural networks have expanded their capacities and expressive power. Furthermore, practical applications have begun to emerge in a variety of fields including recommendation systems, fake news detection, traffic prediction, molecular structure in chemistry, antibacterial discovery physics simulations, and more. As a result, a boom of research at the juncture of graph theory and deep learning has revolutionized many areas of research. However, while graph neural networks have drawn a lot of attention, they still face many challenges when it comes to applying them to other domains, from a conceptual understanding of methodologies to scalability and interpretability...
This book provides a written record of the synergy that already exists among the research communities and represents a solid framework in the advancement of big data and cloud computing disciplines from which new interaction will result in the future. This book is a compendium of the International Conference on Big Data and Cloud Computing (ICBDCC 2021). It includes recent advances in big data analytics, cloud computing, the Internet of nano things, cloud security, data analytics in the cloud, smart cities and grids, etc. This book primarily focuses on the application of knowledge that promotes ideas for solving the problems of society through cutting-edge technologies. The articles featured in this book provide novel ideas that contribute to the growth of world-class research and development. The contents of this book are of interest to researchers and professionals alike.
The Software Principles of Design for Data Modeling, written by Debabrata Samanta of Rochester Institute of Technology in Kosovo, offers a practical and comprehensive solution to the challenges of designing effective software architecture for data modeling. This book covers key topics such as gathering requirements, modeling requirements with use cases, testing the system, building entity-relationship models, building class models in UML with patterns of data modeling and software quality attributes, and use case modeling. It also includes case studies of relational and object-relational database schema design. The unique approach of this book lies in its unifying method for designing softwa...
As artificial intelligence (AI) processing moves from the cloud to the edge of the network, battery-powered and deeply embedded devices are challenged to perform AI functions such as computer vision and voice recognition. Microchip Technology Inc., via its Silicon Storage Technology (SST) subsidiary, is addressing this challenge by significantly reducing power with its analog memory technology, the memBrain Memory Solution. The memBrain solution is being adopted by today’s companies looking to advance machine learning capacities in edge devices. Due to its ability to significantly reduce power, this analog in-memory computer solution is ideal for an AI application. Neuromorphic Computing Systems for Industry 4.0 covers the available literature in the field of neural computing-based microchip technology. It provides further research opportunities in this dynamic field. Covering topics such as emotion recognition, biometric authentication, and neural network protection, this premier reference source is an essential resource for technology developers, computer scientists, engineers, students and educators of higher education, librarians, researchers, and academicians.
Machine learning (ML) and the internet of things (IoT) are the top technologies used by businesses to increase efficiency, productivity, and competitiveness in this fast-paced digital era transformation. ML is the key tool for fast processing and decision making applied to smart city applications and next-generation IoT devices, which require ML to satisfy their working objective. IoT technology has proven efficient in solving many real-world problems, and ML algorithms combined with IoT means the fusion of product and intelligence to achieve better automation, efficiency, productivity, and connectivity. The Handbook of Research on Machine Learning-Enabled IoT for Smart Applications Across I...
This book gathers selected papers presented at International Conference on IoT Based Control Networks and Intelligent Systems (ICICNIS 2022), organized by St. Joseph’s College of Engineering and Technology, Kottayam, Kerala, India, during July 1–2, 2022. The book covers state-of-the-art research insights on Internet of things (IoT) paradigm to access, manage, and control the objects/things/people working under various information systems and deployed under wide range of applications like smart cities, health care, industries, and smart homes.
Data structures are essential principles applicable to any programming language in computer science. Data structures may be studied more easily with Python than with any other programming language because of their interpretability, interactivity, and object-oriented nature. Computers may store and process data at an extraordinary rate and with outstanding accuracy. Therefore, it is of the utmost importance that the data is efficiently stored and is able to be accessed promptly. In addition, data processing should take as little time as feasible while maintaining the highest possible level of precision. Advanced Applications of Python Data Structures and Algorithms assists in understanding and applying the fundamentals of data structures and their many implementations and discusses the advantages and disadvantages of various data structures. Covering key topics such as Python, linked lists, datatypes, and operators, this reference work is ideal for industry professionals, computer scientists, researchers, academicians, scholars, practitioners, instructors, and students.
In the dynamic landscape of bioinformatics and blockchain technology, a profound challenge is evident: ensuring secure exchange and analysis of complex biological data while maintaining data integrity and ownership. Traditional methods fall short in seamlessly transferring genomic data, spurring the fusion of blockchain innovation and optimization algorithms as a groundbreaking solution. Biology-Inspired Optimization Techniques in Blockchain Systems directly addresses the data integrity and ownership dilemma in bioinformatics and blockchain. Despite the intricacies of genomic data, blockchain's potential solution faces obstacles like data volume and slow transactions. These challenges are adeptly overcome through optimization algorithms. The book, authored by experts in bioinformatics, blockchain, and optimization, offers a comprehensive guide, showcasing how blockchain architecture and biological data intricacies can harmonize. It provides a blueprint for using blockchain to store genomic variants and aligned reads. This work empowers developers, data scientists, and researchers to overcome technological barriers, redefining the landscape of bioinformatics and beyond.
The approaches to computer vision have undergone a long journey in recent years, but still, innovations are continuing with leverage increases in computing power, new data availability, and new ways to leverage machine-learning algorithms. As a branch of artificial intelligence (AI), computer vision brings meaningful information from images and videos. Such innovations help communicators to run better campaigns, amplify messages further, and stand out in a noisy, crowded marketplace. Investigations in Pattern Recognition and Computer Vision for Industry 4.0 provides a holistic discussion of the new practical applications and use cases of computer vision and communications. Covering topics such as social media filters, mobile computer vision, and AI-powered image editing, this book is ideal for academicians, researchers, postgraduate students, professional data analysts, research and development centers, organizations dealing with healthcare informatics, and IT firms.