You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
"This book provides various approaches to computational gas-solids flow and will aid the researchers, graduate students and practicing engineers in this rapidly expanding area"--Provided by publisher.
Over the last decade, circulating fluidization or fast fluidization has developed rapidly, superseding standard bubbling fluidization in many applications; for example, fast fluidization provides a better means forcontrolling emissions from the combustion of high-sulfur fuels and excels when used in boilers in steam plant and power stations. China initiated the study of fast fluidization in the early 1970s. Focusing on the substantial research cultivated in that country, with Kwauk at the leading edge, this latest volume in the Advances in Chemical Engineering Series is written in the context of the international state of the art and addresses some of the most vital issues surrounding this fluidization method."
This book contains selected papers of the 11th OpenFOAM® Workshop that was held in Guimarães, Portugal, June 26 - 30, 2016. The 11th OpenFOAM® Workshop had more than 140 technical/scientific presentations and 30 courses, and was attended by circa 300 individuals, representing 180 institutions and 30 countries, from all continents. The OpenFOAM® Workshop provided a forum for researchers, industrial users, software developers, consultants and academics working with OpenFOAM® technology. The central part of the Workshop was the two-day conference, where presentations and posters on industrial applications and academic research were shown. OpenFOAM® (Open Source Field Operation and Manipul...
Scientific Computing & Applications
This book tells the story of how the science of computational multiphase flow began in an effort to better analyze hypothetical light water power reactor accidents, including the “loss of coolant” accident. Written in the style of a memoir by an author with 40 years’ engineering research experience in computer modeling of fluidized beds and slurries, multiphase computational fluid dynamics, and multiphase flow, most recently at Argonne National Laboratory, the book traces how this new science developed during this time into RELAP5 and other computer programs to encompass realistic descriptions of phenomena ranging from fluidized beds for energy and chemicals production, slurry transpor...
The latest research innovations and enhanced technologies have altered the discipline of materials science and engineering. As a direct result of these developments, new trends in Materials Science and Engineering (MSE) pedagogy have emerged that require attention. The Handbook of Research on Recent Developments in Materials Science and Corrosion Engineering Education brings together innovative and current advances in the curriculum design and course content of MSE education programs. Focusing on the application of instructional strategies, pedagogical frameworks, and career preparation techniques, this book is an essential reference source for academicians, engineering practitioners, researchers, and industry professionals interested in emerging and future trends in MSE training and education.
An understanding of friction and wear behavior of materials is crucial in order to improve their performance and durability. New research is providing the opportunity to solve common problems relating to the development of materials, surface modification, coatings, and processing methods across industries. Processing Techniques and Tribological Behavior of Composite Materials provides relevant theoretical frameworks and the latest empirical research findings on the strategic role of composite tribology in a variety of settings. This book is intended for students, researchers, academicians, and professionals working in industries where wear reduction and performance enhancement of machines and machine elements is essential to success.
Thanks to high-speed computers and advanced algorithms, the important field of modelling multiphase flows is an area of rapid growth. This one-stop account – now in paperback, with corrections from the first printing – is the ideal way to get to grips with this topic, which has significant applications in industry and nature. Each chapter is written by an acknowledged expert and includes extensive references to current research. All of the chapters are essentially independent and so the book can be used for a range of advanced courses and the self-study of specific topics. No other book covers so many topics related to multiphase flow, and it will therefore be warmly welcomed by researchers and graduate students of the subject across engineering, physics, and applied mathematics.
With the emergence of nanoscience and technology in the 21st century, research has shifted its focus on the quantum and optical dynamical properties of matter such as atoms, molecules, and solids which are properly characterized in their dynamic state. Quantum and Optical Dynamics of Matter for Nanotechnology carefully addresses the general key concepts in this field and expands to more complex discussions on the most recent advancements and techniques related to quantum dynamics within the confines of physical chemistry. This book is an essential reference for academics, researchers, professionals, and advanced students interested in a modern discussion of a niche area of nanotechnology.