You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The aim of this book is to survey the relations between the various kinds of chaos and related notions for continuous interval maps from a topological point of view. The papers on this topic are numerous and widely scattered in the literature; some of them are little known, difficult to find, or originally published in Russian, Ukrainian, or Chinese. Dynamical systems given by the iteration of a continuous map on an interval have been broadly studied because they are simple but nevertheless exhibit complex behaviors. They also allow numerical simulations, which enabled the discovery of some chaotic phenomena. Moreover, the “most interesting” part of some higher-dimensional systems can be of lower dimension, which allows, in some cases, boiling it down to systems in dimension one. Some of the more recent developments such as distributional chaos, the relation between entropy and Li-Yorke chaos, sequence entropy, and maps with infinitely many branches are presented in book form for the first time. The author gives complete proofs and addresses both graduate students and researchers.
This volume contains the proceedings of the conference Dynamics: Topology and Numbers, held from July 2–6, 2018, at the Max Planck Institute for Mathematics, Bonn, Germany. The papers cover diverse fields of mathematics with a unifying theme of relation to dynamical systems. These include arithmetic geometry, flat geometry, complex dynamics, graph theory, relations to number theory, and topological dynamics. The volume is dedicated to the memory of Sergiy Kolyada and also contains some personal accounts of his life and mathematics.
For computer scientists, especially those in the security field, the use of chaos has been limited to the computation of a small collection of famous but unsuitable maps that offer no explanation of why chaos is relevant in the considered contexts. Discrete Dynamical Systems and Chaotic Machines: Theory and Applications shows how to make finite machines, such as computers, neural networks, and wireless sensor networks, work chaotically as defined in a rigorous mathematical framework. Taking into account that these machines must interact in the real world, the authors share their research results on the behaviors of discrete dynamical systems and their use in computer science. Covering both t...
Welcome to Real Analysis is designed for use in an introductory undergraduate course in real analysis. Much of the development is in the setting of the general metric space. The book makes substantial use not only of the real line and $n$-dimensional Euclidean space, but also sequence and function spaces. Proving and extending results from single-variable calculus provides motivation throughout. The more abstract ideas come to life in meaningful and accessible applications. For example, the contraction mapping principle is used to prove an existence and uniqueness theorem for solutions of ordinary differential equations and the existence of certain fractals; the continuity of the integration...
None
The main theme of the book is the nonlinear geometry of Banach spaces, and it considers various significant problems in the field. The present book is a commented transcript of the notes of the graduate-level topics course in nonlinear functional analysis given by the late Nigel Kalton in 2008. Nonlinear geometry of Banach spaces is a very active area of research with connections to theoretical computer science, noncommutative geometry, as well as geometric group theory. Nigel Kalton was the most influential and prolific contributor to the theory. Collected here are the topics that Nigel Kalton felt were significant for those first dipping a toe into the subject of nonlinear functional analysis and presents these topics in an accessible and concise manner. As well as covering some well-known topics, it also includes recent results discovered by Kalton and his collaborators which have not previously appeared in textbook form. A typical first-year course in functional analysis will provide sufficient background for readers of this book.
The theory of persistence modules originated in topological data analysis and became an active area of research in algebraic topology. This book provides a concise and self-contained introduction to persistence modules and focuses on their interactions with pure mathematics, bringing the reader to the cutting edge of current research. In particular, the authors present applications of persistence to symplectic topology, including the geometry of symplectomorphism groups and embedding problems. Furthermore, they discuss topological function theory, which provides new insight into oscillation of functions. The book is accessible to readers with a basic background in algebraic and differential topology.
The classical ℓp sequence spaces have been a mainstay in Banach spaces. This book reviews some of the foundational results in this area (the basic inequalities, duality, convexity, geometry) as well as connects them to the function theory (boundary growth conditions, zero sets, extremal functions, multipliers, operator theory) of the associated spaces ℓpA of analytic functions whose Taylor coefficients belong to ℓp. Relations between the Banach space ℓp and its associated function space are uncovered using tools from Banach space geometry, including Birkhoff-James orthogonality and the resulting Pythagorean inequalities. The authors survey the literature on all of this material, including a discussion of the multipliers of ℓpA and a discussion of the Wiener algebra ℓ1A. Except for some basic measure theory, functional analysis, and complex analysis, which the reader is expected to know, the material in this book is self-contained and detailed proofs of nearly all the results are given. Each chapter concludes with some end notes that give proper references, historical background, and avenues for further exploration.