You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book proposes the formulation of an efficient methodology that estimates energy system uncertainty and predicts Remaining Useful Life (RUL) accurately with significantly reduced RUL prediction uncertainty. Renewable and non-renewable sources of energy are being used to supply the demands of societies worldwide. These sources are mainly thermo-chemo-electro-mechanical systems that are subject to uncertainty in future loading conditions, material properties, process noise, and other design parameters.It book informs the reader of existing and new ideas that will be implemented in RUL prediction of energy systems in the future. The book provides case studies, illustrations, graphs, and charts. Its chapters consider engineering, reliability, prognostics and health management, probabilistic multibody dynamical analysis, peridynamic and finite-element modelling, computer science, and mathematics.
Human Factors in Transportation Proceedings of the 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022), July 24–28, 2022, New York, USA
This two-volume set — winner of a 2013 Highly Commended BMA Medical Book Award for Medicine — provides an in-depth look at one of the most promising avenues for advances in the diagnosis, prevention and treatment of human disease. The inclusion of the latest information on diagnostic testing, population screening, predicting disease susceptibility, pharmacogenomics and more presents this book as an essential tool for both students and specialists across many biological and medical disciplines, including human genetics and genomics, oncology, neuroscience, cardiology, infectious disease, molecular medicine, and biomedical science, as well as health policy disciplines focusing on ethical, ...
Drama-Based Pedagogy examines the mutually beneficial relationship between drama and education, championing the versatility of drama-based teaching and learning designed in conjunction with the classroom curriculum. Written by seasoned educators and based upon their own extensive experience in diverse learning contexts, this book bridges the gap between theories of drama in education and classroom practice.
This issue of ECS Transactions will cover the following topics in (a) Graphene Material Properties, Preparation, Synthesis and Growth; (b) Metrology and Characterization of Graphene; (c) Graphene Devices and Integration; (d) Graphene Transport and mobility enhancement; (e) Thermal Behavior of Graphene and Graphene Based Devices; (f) Ge & III-V devices for CMOS mobility enhancement; (g) III.V Heterostructures on Si substrates; (h) Nano-wires devices and modeling; (i) Simulation of devices based on Ge, III-V, nano-wires and Graphene; (j) Nanotechnology applications in information technology, biotechnology and renewable energy (k) Beyond CMOS device structures and properties of semiconductor nano-devices such as nanowires; (l) Nanosystem fabrication and processing; (m) nanostructures in chemical and biological sensing system for healthcare and security; and (n) Characterization of nanosystems; (f) Nanosystem modeling.
In this book, internationally recognized researchers give a state-of-the-art overview of the electronic device architectures required for the nano-CMOS era and beyond. Challenges relevant to the scaling of CMOS nanoelectronics are addressed through different core CMOS and memory device options in the first part of the book. The second part reviews new device concepts for nanoelectronics beyond CMOS. The book covers the fundamental limits of core CMOS, improving scaling by the introduction of new materials or processes, new architectures using SOI, multigates and multichannels, and quantum computing.
Representing a further step towards enabling the convergence of computing and communication, this handbook and reference treats germanium electronics and optics on an equal footing. Renowned experts paint the big picture, combining both introductory material and the latest results. The first part of the book introduces readers to the fundamental properties of germanium, such as band offsets, impurities, defects and surface structures, which determine the performance of germanium-based devices in conjunction with conventional silicon technology. The second part covers methods of preparing and processing germanium structures, including chemical and physical vapor deposition, condensation approaches and chemical etching. The third and largest part gives a broad overview of the applications of integrated germanium technology: waveguides, photodetectors, modulators, ring resonators, transistors and, prominently, light-emitting devices. An invaluable one-stop resource for both researchers and developers.
An increasing number of automated vehicles will pervade our traffic systems in the future. The absence of a human driver requires these vehicles to communicate to, and interact with other traffic participants, such as vulnerable road users (pedestrians, cyclists, and emerging mobility forms like eBikes or scooters), but potentially also drivers of manual vehicles. In this regard, various studies and concepts demonstrating so-called “external Human-Machine Interfaces” (eHMIs) have been presented in the past couple of years. Many of these works have investigated comparably simple scenarios, such as a single pedestrian aiming to cross the street when an automated vehicle is approaching. Although we still welcome such contributions, research in this area will have to take more complex situations into account. This drives the need for research addressing other situations involving groups of vulnerable road users and traffic participants, different scenarios including roundabouts or urban shared spaces, but also exploring the potential of communication and interaction beyond such classical situations to improve cooperation in traffic.
An overview of current knowledge and future research directions in magnetospheric physics In the six decades since the term 'magnetosphere' was first introduced, much has been theorized and discovered about the magnetized space surrounding each of the bodies in our solar system. Each magnetosphere is unique yet behaves according to universal physical processes. Magnetospheres in the Solar System brings together contributions from experimentalists, theoreticians, and numerical modelers to present an overview of diverse magnetospheres, from the mini-magnetospheres of Mercury to the giant planetary magnetospheres of Jupiter and Saturn. Volume highlights include: Concise history of magnetosphere...