You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This issue of ¿ECS Transactions¿ describes processing, materials and equipment for CMOS front-end integration including gate stack, source/drain and channel engineering. Topics include strained Si/SiGe and Si/SiGe on insulator; high-mobility channels including III-V¿s, etc.; nanowires and carbon nanotubes; high-k dielectrics, metal and FUSI gate electrodes; doping/annealing for ultra-shallow junctions; low-resistivity contacts; advanced deposition (e.g. ALD, CVD, MBE), RTP, UV, plasma and laser-assisted processes.
Microelectromenchanical systems (MEMS) is a revolutionary field that adapts for new uses a technology already optimized to accomplish a specific set of objectives. The silicon-based integrated circuits process is so highly refined it can produce millions of electrical elements on a single chip and define their critical dimensions to tolerances of 100-billionths of a meter. The MEMS revolution harnesses the integrated circuitry know-how to build working microsystems from micromechanical and microelectronic elements. MEMS is a multidisciplinary field involving challenges and opportunites for electrical, mechanical, chemical, and biomedical engineering as well as physics, biology, and chemistry. As MEMS begin to permeate more and more industrial procedures, society as a whole will be strongly affected because MEMS provide a new design technology that could rivalâ€"perhaps surpassâ€"the societal impact of integrated circuits.
This book gives a fascinating picture of the state-of-the-art in silicon photonics and a perspective on what can be expected in the near future. It is composed of a selected number of reviews authored by world leaders in the field and is written from both academic and industrial viewpoints. An in-depth discussion of the route towards fully integrated silicon photonics is presented. This book will be useful not only to physicists, chemists, materials scientists, and engineers but also to graduate students who are interested in the fields of microphotonics and optoelectronics.
This book is jointly authored by leading academic and industry researchers. The material is unique in that it spans IC interconnect topics ranging from IBM's revolutionary copper process to an in-depth exploration into interconnect-aware computer architectures.
Silicon photonics is currently a very active and progressive area of research, as silicon optical circuits have emerged as the replacement technology for copper-based circuits in communication and broadband networks. The demand for ever improving communications and computing performance continues, and this in turn means that photonic circuits are finding ever increasing application areas. This text provides an important and timely overview of the ‘hot topics’ in the field, covering the various aspects of the technology that form the research area of silicon photonics. With contributions from some of the world’s leading researchers in silicon photonics, this book collates the latest adv...
This book targets engineers and researchers familiar with basic computer architecture concepts who are interested in learning about on-chip networks. This work is designed to be a short synthesis of the most critical concepts in on-chip network design. It is a resource for both understanding on-chip network basics and for providing an overview of state of-the-art research in on-chip networks. We believe that an overview that teaches both fundamental concepts and highlights state-of-the-art designs will be of great value to both graduate students and industry engineers. While not an exhaustive text, we hope to illuminate fundamental concepts for the reader as well as identify trends and gaps ...