You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Buying the safest car for your family shouldn’t be up for debate. Yet for decades, car safety advocates, manufacturers, and lawmakers in the United States have clashed over whether to make automobiles safer. All sides armed themselves with data in the hopes of winning the great car safety debates. In this way, crash statistics and the analysts who studied them made history. But data were always in the backseat, merely supporting different points of view. That is, until now. With car safety, it’s the value we place on every human life that counts. Automobile safety expert Dr. Norma Faris Hubele delivers a lively discussion of the role data play in protecting you and your family on the roa...
Statistics and Health Care Fraud: How to Save Billions helps the public to become more informed citizens through discussions of real world health care examples and fraud assessment applications. The author presents statistical and analytical methods used in health care fraud audits without requiring any mathematical background. The public suffers from health care overpayments either directly as patients or indirectly as taxpayers, and fraud analytics provides ways to handle the large size and complexity of these claims. The book starts with a brief overview of global healthcare systems such as U.S. Medicare. This is followed by a discussion of medical overpayments and assessment initiatives ...
At what point does the sacrifice to our personal information outweigh the public good? If public policymakers had access to our personal and confidential data, they could make more evidence-based, data-informed decisions that could accelerate economic recovery and improve COVID-19 vaccine distribution. However, access to personal data comes at a steep privacy cost for contributors, especially underrepresented groups. Protecting Your Privacy in a Data-Driven World is a practical, nontechnical guide that explains the importance of balancing these competing needs and calls for careful consideration of how data are collected and disseminated by our government and the private sector. Not addressing these concerns can harm the same communities policymakers are trying to protect through data privacy and confidentiality legislation.
How do you learn about what’s going on in the world? Did a news headline grab your attention? Did a news story report on recent research? What do you need to know to be a critical consumer of the news you read? If you are looking to start developing your data self-defense and critical news consumption skills, this book is for you! It reflects a long-term collaboration between a statistician and a journalist to shed light on the statistics behind the stories and the stories behind the statistics. The only prerequisite for enjoying this book is an interest in developing the skills and insights for better understanding news stories that incorporate quantitative information. Chapters in Statis...
Forces shaping human history are complex, but the course of history is undeniably changed on many occasions by conscious acts. These may be premeditated or responsive, calmly calculated or performed under great pressure. They may also be successful or catastrophic, but how are historians to make such judgements and appeal to evidence in support of their conclusions? Further, and crucially, how exactly are we to distinguish probable unrealized alternatives from improbable ones? This book describes some of the modern statistical techniques that can begin to answer this question, as well as some of the difficulties in doing so. Using simple, wellquantified cases drawn from military history, we ...
Statistics and Health Care Fraud: How to Save Billions helps the public to become more informed citizens through discussions of real world health care examples and fraud assessment applications. The author presents statistical and analytical methods used in health care fraud audits without requiring any mathematical background. The public suffers from health care overpayments either directly as patients or indirectly as taxpayers, and fraud analytics provides ways to handle the large size and complexity of these claims. The book starts with a brief overview of global healthcare systems such as U.S. Medicare. This is followed by a discussion of medical overpayments and assessment initiatives ...
The book collects the short papers presented at the 13th Scientific Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society (SIS). The meeting has been organized by the Department of Statistics, Computer Science and Applications of the University of Florence, under the auspices of the Italian Statistical Society and the International Federation of Classification Societies (IFCS). CLADAG is a member of the IFCS, a federation of national, regional, and linguistically-based classification societies. It is a non-profit, non-political scientific organization, whose aims are to further classification research.
Collecting and analyzing data on unemployment, inflation, and inequality help describe the complex world around us. When published by the government, such data are called official statistics. They are reported by the media, used by politicians to lend weight to their arguments, and by economic commentators to opine about the state of society. Despite such widescale use, explanations about how these measures are constructed are seldom provided for a non-technical reader. This Measuring Society book is a short, accessible guide to six topics: jobs, house prices, inequality, prices for goods and services, poverty, and deprivation. Each relates to concepts we use on a personal level to form an u...
Bayesian Statistical Methods provides data scientists with the foundational and computational tools needed to carry out a Bayesian analysis. This book focuses on Bayesian methods applied routinely in practice including multiple linear regression, mixed effects models and generalized linear models (GLM). The authors include many examples with complete R code and comparisons with analogous frequentist procedures. In addition to the basic concepts of Bayesian inferential methods, the book covers many general topics: Advice on selecting prior distributions Computational methods including Markov chain Monte Carlo (MCMC) Model-comparison and goodness-of-fit measures, including sensitivity to prior...