You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The book deals with formal aspects of electromagnetic theory from the classical, the semiclassical and the quantum viewpoints in essays written by internationally distinguished scholars from several countries. The fundamental basis of electromagnetic theory is examined in order to elucidate Maxwell's equations, identify problematic aspects as well as outstanding problems, suggest ways and means of overcoming the obstacles, and review existing literature.This book will be especially valuable for those who wish to go in depth, rather than simply use Maxwell's equations for the solution of engineering problems. Graduate students will find it rich in dissertation topics, and advanced researchers will relish the controversial and detailed arguments and models.
Advanced Electromagnetism: Foundations, Theory and Applications treats what is conventionally called electromagnetism or Maxwell's theory within the context of gauge theory or Yang-Mills theory. A major theme of this book is that fields are not stand-alone entities but are defined by their boundary conditions. The book has practical relevance to efficient antenna design, the understanding of forces and stresses in high energy pulses, ring laser gyros, high speed computer logic elements, efficient transfer of power, parametric conversion, and many other devices and systems. Conventional electromagnetism is shown to be an underdeveloped, rather than a completely developed, field of endeavor, with major challenges in development still to be met.
Topological Foundations of Electromagnetism seeks a fundamental understanding of the dynamics of electromagnetism; and marshals the evidence that in certain precisely defined topological conditions, electromagnetic theory (Maxwell's theory) must be extended or generalized in order to provide an explanation and understanding of, until now, unusual electromagnetic phenomena. Key to this generalization is an understanding of the circumstances under which the so-called A potential fields have physical effects. Basic to the approach taken is that the topological composition of electromagnetic fields is the fundamental conditioner of the dynamics of these fields. The treatment of electromagnetism from, first, a topological perspective, continuing through group theory and gauge theory, to a differential calculus description is a major thread of the book. Suggestions for potential new technologies based on this new understanding and approach to conditional electromagnetism are also given.
The aims of the book are: (1) to extend Maxwell theory to non-Abelian group forms; (2) to demonstrate that the foundations of electromagnetism are topological; (3) to show the multi-disciplinary nature of communications; (4) to demonstrate the effectiveness of modulated signals in penetrating media; (5) to demonstrate that geometric (Clifford) algebra is the appropriate algebra describing modulated signals.The book is important in indicating that the classical theory of electromagnetism, or Maxwell theory, can be developed to address situations and signals of differing symmetry form, and that different topological spaces require that development.
On three occasions and at different locations, conferences were held to honor the eightieth birthday of Professor Herbert Frohlich: on the 18th December, 1985, in Liverpool, England; on the 14th February, 1986, in Stuttgart, Germany; and on the 8th March, 1986, on the Palm Coast, Florida. This Festschrift is a compilation of the papers of those conferences. Frohlich's choice of problems, from the earliest days, was couched in the phy sics of intrinsically interacting systems of excitation. One example, in which he set the course of research which is still followed, concerned dielectric breakdown, developed from the 1930's over several decades. The interacting systems are the electrons (receiving energy from an electric field) and lattice atom motion (taking energy from the electrons via "electron-phonon" interaction, hence heat dissipa tion). There is a threshold field above which the latter cannot keep up with the former, and the combined system (electrons plus phonons) "runs away"; that is to say, collectively it switches to a new state.
Significant advances have occurred in the field since the previous edition, including advances in light squeezing, single photon optics, phase conjugation, and laser technology. The laser is essentially responsible for nonlinear effects and is extensively used in all branches of science, industry, and medicine.
Divergencies in quantum field theory referred to as ?infinite zero-point energy? have been a problem for 70 years. Renormalization has always been considered an unsatisfactory remedy.In 1985 it was found that Maxwell's equations generally do not have solutions that satisfy the causality law. An additional term for magnetic dipole currents corrected this shortcoming. Rotating magnetic dipoles produce magnetic dipole currents, just as rotating electric dipoles in a material like barium titanate produce electric dipole currents. Electric dipole currents were always part of Maxwell's equations.This book shows that the correction of Maxwell's equations eliminates the infinite zero-point energy in quantum electrodynamics. In addition, it presents many more new results.
Most of the specialists working in this interdisciplinary field of physics, biology, biophysics and medicine are associated with "The International Institute of Biophysics" (IIB), in Neuss, Germany, where basic research and possibilities for applications are coordinated. The growth in this field is indicated by the increase in financial support, interest from the scientific community and frequency of publications. Audience: The scientists of IIB have presented the most essential background and applications of biophotonics in these lecture notes in biophysics, based on the summer school lectures by this group. This book is devoted to questions of elementary biophysics, as well as current developments and applications. It will be of interest to graduate and postgraduate students, life scientists, and the responsible officials of industries and governments looking for non-invasive methods of investigating biological tissues.
The book describes a new form of radar for which the target response is frequency, i.e., resonance-dependent. The book provides both prototype designs and empirical results collected from a variety of targets. The new form of radar, called RAMAR (Resonance and Aspect Matched Adaptive Radar) advances radar OCo mere ranging and detection OCo to the level of RF spectroscopy, and permits an advance of spectroscopic methods from optical, through infra-red and into the RF spectral range. The book will describe how a target''s response can be a function of frequency components in the transmitted signal''s envelope as well as the signal''s carrier.