Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Games of No Chance 3
  • Language: en
  • Pages: 577

Games of No Chance 3

This fascinating look at combinatorial games, that is, games not involving chance or hidden information, offers updates on standard games such as Go and Hex, on impartial games such as Chomp and Wythoff's Nim, and on aspects of games with infinitesimal values, plus analyses of the complexity of some games and puzzles and surveys on algorithmic game theory, on playing to lose, and on coping with cycles. The volume is rounded out with an up-to-date bibliography by Fraenkel and, for readers eager to get their hands dirty, a list of unsolved problems by Guy and Nowakowski. Highlights include some of Siegel's groundbreaking work on loopy games, the unveiling by Friedman and Landsberg of the use of renormalization to give very intriguing results about Chomp, and Nakamura's "Counting Liberties in Capturing Races of Go." Like its predecessors, this book should be on the shelf of all serious games enthusiasts.

Barrycades and Septoku: Papers in Honor of Martin Gardner and Tom Rodgers
  • Language: en
  • Pages: 236

Barrycades and Septoku: Papers in Honor of Martin Gardner and Tom Rodgers

The Gathering 4 Gardner is a biannual conference founded—and for many years organized—by Tom Rodgers to celebrate the spirit of Martin Gardner. While primarily concerned with recreational mathematics, most of Gardner's intellectual interests are featured, including magic, literature, philosophy, puzzles, art, and rationality. Gardner's writing inspired several generations of mathematicians by introducing us to the joy of discovery and exploration, and the Gathering's aim is to continue that tradition of inspiration. This volume, a tribute to Rodgers and Gardner, consists of papers originally presented at the Gathering 4 Gardner meetings. Recreational mathematics is strongly prominent wit...

Mathematical Wizardry for a Gardner
  • Language: en
  • Pages: 286

Mathematical Wizardry for a Gardner

  • Type: Book
  • -
  • Published: 2009-04-20
  • -
  • Publisher: CRC Press

In this volume, world-leading puzzle designers, puzzle collectors, mathematicians, and magicians continue the tradition of honoring Martin Gardner, who inspired them to enter mathematics, to enter magic, to bring magic into their mathematics, or to bring mathematics into their magic. This edited collection contains a variety of articles connected t

Mathematical Puzzles
  • Language: en
  • Pages: 450

Mathematical Puzzles

  • Type: Book
  • -
  • Published: 2024-06-21
  • -
  • Publisher: CRC Press

Research in mathematics is much more than solving puzzles, but most people will agree that solving puzzles is not just fun: it helps focus the mind and increases one's armory of techniques for doing mathematics. Mathematical Puzzles makes this connection explicit by isolating important mathematical methods, then using them to solve puzzles and prove a theorem. This Revised Edition has been thoroughly edited to correct errors and provide clarifications, and includes some totally different solutions, modified puzzles, and one entirely new puzzle. Features A collection of the world’s best mathematical puzzles Each chapter features a technique for solving mathematical puzzles, examples, and finally a genuine theorem of mathematics that features that technique in its proof Puzzles that are entertaining, mystifying, paradoxical, and satisfying; they are not just exercises or contest problems.

Knots, Links and Their Invariants
  • Language: en
  • Pages: 149

Knots, Links and Their Invariants

This book is an elementary introduction to knot theory. Unlike many other books on knot theory, this book has practically no prerequisites; it requires only basic plane and spatial Euclidean geometry but no knowledge of topology or group theory. It contains the first elementary proof of the existence of the Alexander polynomial of a knot or a link based on the Conway axioms, particularly the Conway skein relation. The book also contains an elementary exposition of the Jones polynomial, HOMFLY polynomial and Vassiliev knot invariants constructed using the Kontsevich integral. Additionally, there is a lecture introducing the braid group and shows its connection with knots and links. Other important features of the book are the large number of original illustrations, numerous exercises and the absence of any references in the first eleven lectures. The last two lectures differ from the first eleven: they comprise a sketch of non-elementary topics and a brief history of the subject, including many references.

PAUL HALMOS Celebrating 50 Years of Mathematics
  • Language: en
  • Pages: 312

PAUL HALMOS Celebrating 50 Years of Mathematics

Paul Halmos will celebrate his 75th birthday on the 3rd of March 1991. This volume, from colleagues, is an expression of affection for the man and respect for his contributions as scholar, writer, and teacher. It contains articles about Paul, about the times in which he worked and the places he has been, and about mathematics. Paul has furthered his profession in many ways and this collection reflects that diversity. Articles about Paul are not biographical, but rather tell about his ideas, his philosophy, and his style. Articles about the times and places in which Paul has worked describe people, events, and ways in which Paul has influenced students and colleagues over the past 50 years. Articles about mathematics are about all kinds of mathematics, including operator theory and Paul's research in the subject. This volume represents a slice of mathematical life and it shows how many parts of mathematics Paul has touched. It is fitting that this volume has been produced with the support and cooperation of Springer-Verlag. For over 35 years, Paul has contributed to mathematics publishing as founder and editor of many outstanding series.

Combinatorics Advances
  • Language: en
  • Pages: 331

Combinatorics Advances

On March 28~31, 1994 (Farvardin 8~11, 1373 by Iranian calendar), the Twenty fifth Annual Iranian Mathematics Conference (AIMC25) was held at Sharif University of Technology in Tehran, Islamic Republic of Iran. Its sponsors in~ eluded the Iranian Mathematical Society, and the Department of Mathematical Sciences at Sharif University of Technology. Among the keynote speakers were Professor Dr. Andreas Dress and Professor Richard K. Guy. Their plenary lec~ tures on combinatorial themes were complemented by invited and contributed lectures in a Combinatorics Session. This book is a collection of refereed papers, submitted primarily by the participants after the conference. The topics covered are diverse, spanning a wide range of combinatorics and al~ lied areas in discrete mathematics. Perhaps the strength and variety of the pa~ pers here serve as the best indications that combinatorics is advancing quickly, and that the Iranian mathematics community contains very active contributors. We hope that you find the papers mathematically stimulating, and look forward to a long and productive growth of combinatorial mathematics in Iran.

Rewriting Techniques and Applications
  • Language: en
  • Pages: 401

Rewriting Techniques and Applications

This book constitutes the refereed proceedings of the 20th International Conference on Rewriting Techniques and Applications, RTA 2009, held in Brasília, Brazil, during June 29 - July 1, 2009. The 22 revised full papers and four system descriptions presented were carefully reviewed and selected from 59 initial submissions. The papers cover current research on all aspects of rewriting including typical areas of interest such as applications, foundational issues, frameworks, implementations, and semantics.

Combinatorial Number Theory
  • Language: en
  • Pages: 501

Combinatorial Number Theory

This carefully edited volume contains selected refereed papers based on lectures presented by many distinguished speakers at the "Integers Conference 2005", an international conference in combinatorial number theory. The conference was held in celebration of the 70th birthday of Ronald Graham, a leader in several fields of mathematics.

Combinatorial Game Theory
  • Language: en
  • Pages: 541

Combinatorial Game Theory

It is wonderful to see advanced combinatorial game theory made accessible. Siegel's expertise and enjoyable writing style make this book a perfect resource for anyone wanting to learn the latest developments and open problems in the field. —Erik Demaine, MIT Aaron Siegel has been the major contributor to Combinatorial Game Theory over the last decade or so. Now, in this authoritative work, he has made the latest results in the theory accessible, so that the subject will achieve the place in mathematics that it deserves. —Richard Guy, University of Calgary Combinatorial game theory is the study of two-player games with no hidden information and no chance elements. The theory assigns algeb...