You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Beginning with a general overview of nanocomposites, Bionanocomposites: Integrating Biological Processes for Bio-inspired Nanotechnologies details the systems available in nature (nucleic acids, proteins, carbohydrates, lipids) that can be integrated within suitable inorganic matrices for specific applications. Describing the relationship between architecture, hierarchy and function, this book aims at pointing out how bio-systems can be key components of nanocomposites. The text then reviews the design principles, structures, functions and applications of bionanocomposites. It also includes a section presenting related technical methods to help readers identify and understand the most widely used analytical tools such as mass spectrometry, calorimetry, and impedance spectroscopy, among others.
Bio-nanocomposites combine the enhanced properties of commercial polymer nanocomposites with the low environmental impact of biodegradable material, making them a topic of great current interest. Because of their tremendous role in reducing dependency on commercial non-biodegradable polymers, and their environmentally-friendly nature, bio-nanocomposites need to be studied in greater detail. In this book, recent advancements in their development are brought together in a single text, to provide researchers with a thorough insight into the various systems, and to open up future perspectives. Although the commercial applications of these bio-nanocomposites are in their infancy, these materials have a huge commercial potential. In setting out the next generation of advances in nanocomposite technology, this book opens the way for further developments in the field. Describing the subject as a whole, from a basic introduction to the more specific systems and advancements, this book can be used both as a professional reference and for teaching purposes.
With the increased presence of nanomaterials in commercial products such as cosmetics and sunscreens, fillers in dental fillings, water filtration process, catalysis, photovoltaic cells, bio-detection, a growing public debate is emerging on toxicological and environmental effects of direct and indirect exposure to these materials. Nanomaterials: A Danger or a Promise? forms a balanced overview of the health and environmental issues of nanoscale materials. By considering both the benefits and risks associated with nanomaterials, Nanomaterials: A Danger or a Promise? compiles a complete and detailed image of the many aspects of the interface between nanomaterials and their real-life applicatio...
Functional Hybrid Materials consist of both organic and inorganic components, assembled for the purpose of generating desirable properties and functionalities. The aim is twofold: to bring out or enhance advantageous chemical, electrochemical, magnetic or electronic characteristics and at the same time to reduce or wholly suppress undesirable properties or effects. Another target is the creation of entirely new material behavior. The vast number of hybrid material components available has opened up a wide and diversified field of fascinating research. In this book, a team of highly renowned experts gives an in-depth overview, illustrating the superiority of well-designed hybrid materials and their potential applications.
This is the first book to present the idea of using Industry 4.0 and smart manufacturing in the microalgae industry for environmental biotechnology. It provides the latest developments on microalgae for use in environmental biotechnology, explains process analysis from an engineering point of view, and discusses the transition to smart manufacturing and how state of the art technologies can be incorporated. It covers applications, technologies, challenges, and future perspectives. • Showcases how Industry 4.0 can be applied in algae industry • Covers new ideas generated from Industry 4.0 for Industrial Internet of Things (IIoT) • Demonstrates new technologies invented to cater to Industry 4.0 in microalgae • Features worked examples related to biological systems Aimed at chemical engineers, bioengineers, and environmental engineers, this is an essential resource for researchers, academics, and industry professionals in the microalgae biotechnology field.
Quantum Dots and Polymer Nanocomposites: Synthesis, Chemistry, and Applications reviews the properties, fabrication, and current and potential users of quantum dots-based polymer composites. It offers a much-needed update on the essential components of polymer nanocomposites by exploring the synthesis, processing, classification, characterisation, and applications of quantum dots. Topics include modern fabrication technologies, processing, nanostructure formation, and the mechanisms of reinforcement. This book also covers biocompatibility, suitability, and toxic effects of quantum dots-based polymer nanocomposites. Applications such as biomedical, pollution mitigation, sensors, and catalysis are explored, as are opportunities and future research directions. This edited book acts as a one-stop reference book for researchers, academics, advanced students, and scientists studying epoxy blends. It will be of interest to materials scientists, polymer technologists, nanotechnologists, chemical engineers, physicists (optics, plasmonics), chemists, and mechanical engineers, among others.
This comprehensive three-volume handbook brings together a review of the current state together with the latest developments in sol-gel technology to put forward new ideas. The first volume, dedicated to synthesis and shaping, gives an in-depth overview of the wet-chemical processes that constitute the core of the sol-gel method and presents the various pathways for the successful synthesis of inorganic and hybrid organic-inorganic materials, bio- and bio-inspired materials, powders, particles and fibers as well as sol-gel derived thin films, coatings and surfaces. The second volume deals with the mechanical, optical, electrical and magnetic properties of sol-gel derived materials and the methods for their characterization such as diffraction methods and nuclear magnetic resonance, infrared and Raman spectroscopies. The third volume concentrates on the various applications in the fields of membrane science, catalysis, energy research, biomaterials science, biomedicine, photonics and electronics.
This book features a special subsection of Nanomedicine, an application of nanotechnology to achieve breakthroughs in healthcare. It exploits the improved and often novel physical, chemical and biological properties of materials only existent at the nanometer scale. As a consequence of small scale, nanosystems in most cases are efficiently uptaken by cells and appear to act at the intracellular level. Nanotechnology has the potential to improve diagnosis, treatment and follow-up of diseases, and includes targeted drug delivery and regenerative medicine; it creates new tools and methods that impact significantly upon existing conservative practices. This volume is a collection of authoritativ...
This completely updated and expanded second edition stands as a comprehensive knowledgebase on both the fundamentals and applications of this important materials processing method. The diverse, international team of contributing authors of this reference clarify in extensive detail properties and applications of sol-gel science and technology as it pertains to the production of substances, active and non-active, including optical, electronic, chemical, sensor, bio- and structural materials. Essential to a wide range of manufacturing industries, the compilation divides into the three complementary sections: Sol-Gel Processing, devoted to general aspects of processing and recently developed ma...