You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume gathers contributions from theoretical, experimental and computational researchers who are working on various topics in theoretical/computational/mathematical neuroscience. The focus is on mathematical modeling, analytical and numerical topics, and statistical analysis in neuroscience with applications. The following subjects are considered: mathematical modelling in Neuroscience, analytical and numerical topics; statistical analysis in Neuroscience; Neural Networks; Theoretical Neuroscience. The book is addressed to researchers involved in mathematical models applied to neuroscience.
This book presents the latest research in computational methods for modeling and simulating brain disorders. In particular, it shows how mathematical models can be used to study the relationship between a given disorder and the specific brain structure associated with that disorder. It also describes the emerging field of computational psychiatry, including the study of pathological behavior due to impaired functional connectivity, pathophysiological activity, and/or aberrant decision-making. Further, it discusses the data analysis techniques that will be required to analyze the increasing amount of data being generated about the brain. Lastly, the book offers some tips on the application of computational models in the field of quantitative systems pharmacology. Mainly written for computational scientists eager to discover new application fields for their model, this book also benefits neurologists and psychiatrists wanting to learn about new methods.
Closed-loop neurophysiology has been accelerated by recent software and hardware developments and by the emergence of novel tools to control neuronal activity with spatial and temporal precision, in which stimuli are delivered in real time based on recordings or behavior. Real-time stimulation feedback enables a wide range of innovative studies of information processing and plasticity in neuronal networks. This Research Topic e-Book comprises 16 Original Research Articles, seven Methods Articles, and seven Reviews, Mini- Reviews, and Perspectives, all peer-reviewed and published in Frontiers in Neural Circuits. The contributions deal with closed loop neurophysiology experiments at a variety of levels of neural circuit complexity. Some include modeling and theoretical analyses. New enabling technologies and techniques are described. Novel work is presented from experiments in vitro, in vivo, and in humans, along with their clinical and technological implications for improving the human condition.
This Research Topic is centered around the attempt to understand network activity of the brain by combining experimental and modeling techniques. A surprisingly rich set of new observations is emerging about the functions of the olivo-cerebellar cortical modules. This Research Topic will consider the critical elements of new emerging knowledge achieved using in vitro and in vivo techniques and the computational attempts at functional circuit reconstruction.
We present in this volume the collection of finally accepted papers of the eighth edition of the “IWANN” conference (“International Work-Conference on Artificial Neural Networks”). This biennial meeting focuses on the foundations, theory, models and applications of systems inspired by nature (neural networks, fuzzy logic and evolutionary systems). Since the first edition of IWANN in Granada (LNCS 540, 1991), the Artificial Neural Network (ANN) community, and the domain itself, have matured and evolved. Under the ANN banner we find a very heterogeneous scenario with a main interest and objective: to better understand nature and beings for the correct elaboration of theories, models an...
The true revolution in the age of digital neuroanatomy is the ability to extensively quantify anatomical structures and thus investigate structure-function relationships in great detail. Large-scale projects were recently launched with the aim of providing infrastructure for brain simulations. These projects will increase the need for a precise understanding of brain structure, e.g., through statistical analysis and models. From articles in this Research Topic, we identify three main themes that clearly illustrate how new quantitative approaches are helping advance our understanding of neural structure and function. First, new approaches to reconstruct neurons and circuits from empirical dat...
This book stems from the urgent necessity to address neurodegenerative diseases, which are among the most severe health challenges currently confronting society. Neurodegenerative diseases have become a major threat to public health in recent years, impacting millions of people globally and creating a substantial strain on healthcare systems and society as a whole. Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis are examples of these diseases. This book offers a thorough survey of the latest developments in this rapidly growing field. This book is targeted towards a wide range of readers, including academics, researchers, medical professionals, students, policy makers, and anybody else who is interested in the convergence of neuroscience, nanotechnology, and healthcare. Irrespective of one's familiarity with the subject, this book provides motivation and insightful information to bolster our group's endeavors in combating these debilitating diseases.
In the central nervous system, extracellular matrix (ECM) molecules, including hyaluronic acid, chondroitin and heparan sulfate proteoglycans, tenascins, reelin and agrin, along with their remodelling enzymes, such as neurotrypsin, neuropsin, plasminogen activators, and metalloproteinases, are secreted by neural and non-neural cells into the extracellular space to form the ECM and signal via ECM receptors. Despite recent advances in the ECM field, the importance of neural ECM for physiological and pathological processes is currently less widely recognized than that of other CNS elements. This book will enlighten recent progress in our understanding of mechanisms by which neural ECM, its rece...
This book is a collection of articles by leading researchers working at the cutting edge of neuro-computational modelling of neurological and psychiatric disorders. Each article contains model validation techniques used in the context of the specific problem being studied. Validation is essential for neuro-inspired computational models to become useful tools in the understanding and treatment of disease conditions. Currently, the immense diversity in neuro-computational modelling approaches for investigating brain diseases has created the need for a structured and coordinated approach to benchmark and standardise validation methods and techniques in this field of research. This book serves as a step towards a systematic approach to validation of neuro-computational models used for studying brain diseases and should be useful for all neuro-computational modellers.