You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book constitutes the proceedings of the 2000 Howard conference on “Infinite Dimensional Lie Groups in Geometry and Representation Theory”. It presents some important recent developments in this area. It opens with a topological characterization of regular groups, treats among other topics the integrability problem of various infinite dimensional Lie algebras, presents substantial contributions to important subjects in modern geometry, and concludes with interesting applications to representation theory. The book should be a new source of inspiration for advanced graduate students and established researchers in the field of geometry and its applications to mathematical physics.
This volume contains papers based on some of the talks given at the NSF-CBMS conference on ``The Geometrical Study of Differential Equations'' held at Howard University (Washington, DC). The collected papers present important recent developments in this area, including the treatment of nontransversal group actions in the theory of group invariant solutions of PDEs, a method for obtaining discrete symmetries of differential equations, the establishment of a group-invariant version of the variational complex based on a general moving frame construction, the introduction of a new variational complex for the calculus of difference equations and an original structural investigation of Lie-Backlun...
This volume presents articles from several lectures presented at the school on ``Quantum Symmetries in Theoretical Physics and Mathematics'' held in Bariloche, Argentina. The various lecturers provided significantly different points of view on several aspects of Hopf algebras, quantum group theory, and noncommutative differential geometry, ranging from analysis, geometry, and algebra to physical models, especially in connection with integrable systems and conformal field theories.Primary topics discussed in the text include subgroups of quantum $SU(N)$, quantum ADE classifications and generalized Coxeter systems, modular invariance, defects and boundaries in conformal field theory, finite dimensional Hopf algebras, Lie bialgebras and Belavin-Drinfeld triples, real forms ofquantum spaces, perturbative and non-perturbative Yang-Baxter operators, braided subfactors in operator algebras and conformal field theory, and generalized ($d$) cohomologies.
This volume reflects the proceedings from an international conference on celestial mechanics held at Northwestern University (Evanston, IL) in celebration of Donald Saari's sixtieth birthday. Many leading experts and researchers presented their recent results. Don Saari's significant contribution to the field came in the late 1960s through a series of important works. His work revived the singularity theory in the $n$-body problem which was started by Poincare and Painleve. Saari'ssolution of the Littlewood conjecture, his work on singularities, collision and noncollision, on central configurations, his decompositions of configurational velocities, etc., are still much studied today and were...
This volume presents the proceedings from the month-long program held at Johns Hopkins University (Baltimore, MD) on homotopy theory, sponsored by the Japan-U.S. Mathematics Institute (JAMI). The book begins with historical accounts on the work of Professors Peter Landweber and Stewart Priddy. Central among the other topics are the following: 1. classical and nonclassical theory of $H$-spaces, compact groups, and finite groups, 2. classical and chromatic homotopy theory andlocalization, 3. classical and topological Hochschild cohomology, 4. elliptic cohomology and its relation to Moonshine and topological modular forms, and 5. motivic cohomology and Chow rings. This volume surveys the current state of research in these areas and offers an overview of futuredirections.
The 23 papers report recent developments in using the technique to help clarify the relationship between phenomena and data in a number of natural and social sciences. Among the topics are a coordinate-free approach to multivariate exponential families, some rank-based hypothesis tests for covariance structure and conditional independence, deconvolution density estimation on compact Lie groups, random walks on regular languages and algebraic systems of generating functions, and the extendibility of statistical models. There is no index. c. Book News Inc.
Alfred Gray's work covered a great part of differential geometry. In September 2000, a remarkable International Congress on Differential Geometry was held in his memory in Bilbao, Spain. Mathematicians from all over the world, representing 24 countries, attended the event. This volume includes major contributions by well known mathematicians (T. Banchoff, S. Donaldson, H. Ferguson, M. Gromov, N. Hitchin, A. Huckleberry, O. Kowalski, V. Miquel, E. Musso, A. Ros, S. Salamon, L. Vanhecke, P. Wellin and J.A. Wolf), the interesting discussion from the round table moderated by J.-P. Bourguignon, and a carefully selected and refereed selection of the Short Communications presented at the Congress. This book represents the state of the art in modern differential geometry, with some general expositions of some of the more active areas: special Riemannian manifolds, Lie groups and homogeneous spaces, complex structures, symplectic manifolds, geometry of geodesic spheres and tubes and related problems, geometry of surfaces, and computer graphics in differential geometry.
For the second time, a Summer School in Analysis and Mathematical Physics took place at the Universidad Nacional Autonoma de Mexico in Cuernavaca. The purpose of the schools is to provide a bridge from standard graduate courses in mathematics to current research topics, particularly in analysis. The lectures are given by internationally recognized specialists in the fields. The topics covered in this Second Summer School include harmonic analysis, complex analysis, pseudodifferential operators, the mathematics of quantum chaos, and non-linear analysis.
This volume presents the proceedings from the research conference, Symbolic Computation: Solving Equations in Algebra, Analysis, and Engineering, held at Mount Holyoke College, USA. It provides an overview of contemporary research in symbolic computation as it applies to the solution of polynomial systems. The conference brought together pure and applied mathematicians, computer scientists, and engineers, who use symbolic computation to solve systems of equations or who develop the theoretical background and tools needed for this purpose. Within this general framework, the conference focused on several themes: systems of polynomials, systems of differential equations, noncommutative systems, and applications.
This book contains the proceedings of the Special Session, Interaction of Inverse Problems and Image Analysis, held at the January 2001 meeting of the AMS in New Orleans, LA. The common thread among inverse problems, signal analysis, and image analysis is a canonical problem: recovering an object (function, signal, picture) from partial or indirect information about the object. Both inverse problems and imaging science have emerged in recent years as interdisciplinary research fields with profound applications in many areas of science, engineering, technology, and medicine. Research in inverse problems and image processing shows rich interaction with several areas of mathematics and strong links to signal processing, variational problems, applied harmonic analysis, and computational mathematics. This volume contains carefully referred and edited original research papers and high-level survey papers that provide overview and perspective on the interaction of inverse problems, image analysis, and medical imaging. The book is suitable for graduate students and researchers interested in signal and image processing and medical imaging.