Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Feature Extraction
  • Language: en
  • Pages: 765

Feature Extraction

  • Type: Book
  • -
  • Published: 2008-11-16
  • -
  • Publisher: Springer

This book is both a reference for engineers and scientists and a teaching resource, featuring tutorial chapters and research papers on feature extraction. Until now there has been insufficient consideration of feature selection algorithms, no unified presentation of leading methods, and no systematic comparisons.

Structural, Syntactic, and Statistical Pattern Recognition
  • Language: en
  • Pages: 959

Structural, Syntactic, and Statistical Pattern Recognition

This is the proceedings of the 11th International Workshop on Structural and Syntactic Pattern Recognition, SSPR 2006 and the 6th International Workshop on Statistical Techniques in Pattern Recognition, SPR 2006, held in Hong Kong, August 2006 alongside the Conference on Pattern Recognition, ICPR 2006. 38 revised full papers and 61 revised poster papers are included, together with 4 invited papers covering image analysis, character recognition, bayesian networks, graph-based methods and more.

Large-scale Kernel Machines
  • Language: en
  • Pages: 409

Large-scale Kernel Machines

  • Type: Book
  • -
  • Published: 2007
  • -
  • Publisher: MIT Press

Solutions for learning from large scale datasets, including kernel learning algorithms that scale linearly with the volume of the data and experiments carried out on realistically large datasets. Pervasive and networked computers have dramatically reduced the cost of collecting and distributing large datasets. In this context, machine learning algorithms that scale poorly could simply become irrelevant. We need learning algorithms that scale linearly with the volume of the data while maintaining enough statistical efficiency to outperform algorithms that simply process a random subset of the data. This volume offers researchers and engineers practical solutions for learning from large scale ...

Learning to Classify Text Using Support Vector Machines
  • Language: en
  • Pages: 218

Learning to Classify Text Using Support Vector Machines

Based on ideas from Support Vector Machines (SVMs), Learning To Classify Text Using Support Vector Machines presents a new approach to generating text classifiers from examples. The approach combines high performance and efficiency with theoretical understanding and improved robustness. In particular, it is highly effective without greedy heuristic components. The SVM approach is computationally efficient in training and classification, and it comes with a learning theory that can guide real-world applications. Learning To Classify Text Using Support Vector Machines gives a complete and detailed description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, efficient performance estimation, and a statistical learning model of text classification. In addition, it includes an overview of the field of text classification, making it self-contained even for newcomers to the field. This book gives a concise introduction to SVMs for pattern recognition, and it includes a detailed description of how to formulate text-classification tasks for machine learning.

Learning to Rank for Information Retrieval
  • Language: en
  • Pages: 282

Learning to Rank for Information Retrieval

Due to the fast growth of the Web and the difficulties in finding desired information, efficient and effective information retrieval systems have become more important than ever, and the search engine has become an essential tool for many people. The ranker, a central component in every search engine, is responsible for the matching between processed queries and indexed documents. Because of its central role, great attention has been paid to the research and development of ranking technologies. In addition, ranking is also pivotal for many other information retrieval applications, such as collaborative filtering, definition ranking, question answering, multimedia retrieval, text summarizatio...

Preference Learning
  • Language: en
  • Pages: 457

Preference Learning

The topic of preferences is a new branch of machine learning and data mining, and it has attracted considerable attention in artificial intelligence research in previous years. It involves learning from observations that reveal information about the preferences of an individual or a class of individuals. Representing and processing knowledge in terms of preferences is appealing as it allows one to specify desires in a declarative way, to combine qualitative and quantitative modes of reasoning, and to deal with inconsistencies and exceptions in a flexible manner. And, generalizing beyond training data, models thus learned may be used for preference prediction. This is the first book dedicated...

Kernel Methods for Pattern Analysis
  • Language: en
  • Pages: 520

Kernel Methods for Pattern Analysis

Publisher Description

Discovery Science
  • Language: en
  • Pages: 510

Discovery Science

  • Type: Book
  • -
  • Published: 2003-06-30
  • -
  • Publisher: Springer

These are the conference proceedings of the 4th International Conference on Discovery Science (DS 2001). Although discovery is naturally ubiquitous in s- ence, and scientific discovery itself has been subject to scientific investigation for centuries, the term Discovery Science is comparably new. It came up in conn- tion with the Japanese Discovery Science project (cf. Arikawa's invited lecture on The Discovery Science Project in Japan in the present volume) some time during the last few years. Setsuo Arikawa is the father in spirit of the Discovery Science conference series. He led the above mentioned project, and he is currently serving as the chairman of the international steering committ...

Classification, Automation, and New Media
  • Language: en
  • Pages: 516

Classification, Automation, and New Media

Given the huge amount of information in the internet and in practically every domain of knowledge that we are facing today, knowledge discovery calls for automation. The book deals with methods from classification and data analysis that respond effectively to this rapidly growing challenge. The interested reader will find new methodological insights as well as applications in economics, management science, finance, and marketing, and in pattern recognition, biology, health, and archaeology.

Handbook of Empirical Economics and Finance
  • Language: en
  • Pages: 532

Handbook of Empirical Economics and Finance

  • Type: Book
  • -
  • Published: 2016-04-19
  • -
  • Publisher: CRC Press

Handbook of Empirical Economics and Finance explores the latest developments in the analysis and modeling of economic and financial data. Well-recognized econometric experts discuss the rapidly growing research in economics and finance and offer insight on the future direction of these fields. Focusing on micro models, the first group of chapters describes the statistical issues involved in the analysis of econometric models with cross-sectional data often arising in microeconomics. The book then illustrates time series models that are extensively used in empirical macroeconomics and finance. The last set of chapters explores the types of panel data and spatial models that are becoming increasingly significant in analyzing complex economic behavior and policy evaluations. This handbook brings together both background material and new methodological and applied results that are extremely important to the current and future frontiers in empirical economics and finance. It emphasizes inferential issues that transpire in the analysis of cross-sectional, time series, and panel data-based empirical models in economics, finance, and related disciplines.