You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is devoted to the ubiquity of the Schur parameters. A dilation theoretic view leads to a unified perspective on several topics where Schur parameters appear as basic cells. Together with the transmission line, their physical counter- part, they appear in scattering theory, in modeling, prediction and filtering of nonstationary processes, in signal processing, geophysics and system theory. Modeling problems are considered for certain classes of operators, interpolation problems, determinental formulae, as well as connections with certain classes of graphs where, again, the Schur parameters could play a role. Some general algorithms that explore the transmission line are also presented in this book. As a whole, the text is self-contained and it is addressed to people interested in the previously mentioned topics or connections between them.
Presents a modern, readable introduction to spaces with indefinite inner product and their operator theory.
The volume is dedicated to Lev Sakhnovich, who made fundamental contributions in operator theory and related topics. Besides bibliographic material, it includes a number of selected papers related to Lev Sakhnovich's research interests. The papers are related to operator identities, moment problems, random matrices and linear stochastic systems.
A collection of articles emphasizing modern interpolation theory, a topic which has seen much progress in recent years. These ideas and problems in operator theory, often arising from systems and control theories, bring the reader to the forefront of current research in this area.
This volume is devoted to Joseph A. (Joe) Ball’s contributions to operator theory and its applications and in celebration of his seventieth birthday. Joe Ball’s career spans over four and a half decades, starting with his work on model theory and related topics for non-contractions and operators on multiply connected domains. Later on, more applied operator theory themes appeared in his work, involving factorization and interpolation for operator-valued functions, with extensive applications in system and control theory. He has worked on nonlinear control, time-varying systems and, more recently, on multidimensional systems and noncommutative H∞-theory on the unit ball and polydisk, an...
This extraordinary three-volume work, written in an engaging and rigorous style by a world authority in the field, provides an accessible, comprehensive introduction to the full spectrum of mathematical and statistical techniques underpinning contemporary methods in data-driven learning and inference. This second volume, Inference, builds on the foundational topics established in volume I to introduce students to techniques for inferring unknown variables and quantities, including Bayesian inference, Monte Carlo Markov Chain methods, maximum-likelihood estimation, hidden Markov models, Bayesian networks, and reinforcement learning. A consistent structure and pedagogy is employed throughout this volume to reinforce student understanding, with over 350 end-of-chapter problems (including solutions for instructors), 180 solved examples, almost 200 figures, datasets and downloadable Matlab code. Supported by sister volumes Foundations and Learning, and unique in its scale and depth, this textbook sequence is ideal for early-career researchers and graduate students across many courses in signal processing, machine learning, statistical analysis, data science and inference.
Semidefinite and conic optimization is a major and thriving research area within the optimization community. Although semidefinite optimization has been studied (under different names) since at least the 1940s, its importance grew immensely during the 1990s after polynomial-time interior-point methods for linear optimization were extended to solve semidefinite optimization problems. Since the beginning of the 21st century, not only has research into semidefinite and conic optimization continued unabated, but also a fruitful interaction has developed with algebraic geometry through the close connections between semidefinite matrices and polynomial optimization. This has brought about importan...
The focus program on Analytic Function Spaces and their Applications took place at Fields Institute from July 1st to December 31st, 2021. Hilbert spaces of analytic functions form one of the pillars of complex analysis. These spaces have a rich structure and for more than a century have been studied by many prominent mathematicians. They also have several essential applications in other fields of mathematics and engineering, e.g., robust control engineering, signal and image processing, and theory of communication. The most important Hilbert space of analytic functions is the Hardy class H2. However, its close cousins, e.g. the Bergman space A2, the Dirichlet space D, the model subspaces Kt,...
This extraordinary three-volume work, written in an engaging and rigorous style by a world authority in the field, provides an accessible, comprehensive introduction to the full spectrum of mathematical and statistical techniques underpinning contemporary methods in data-driven learning and inference. This final volume, Learning, builds on the foundational topics established in volume I to provide a thorough introduction to learning methods, addressing techniques such as least-squares methods, regularization, online learning, kernel methods, feedforward and recurrent neural networks, meta-learning, and adversarial attacks. A consistent structure and pedagogy is employed throughout this volume to reinforce student understanding, with over 350 end-of-chapter problems (including complete solutions for instructors), 280 figures, 100 solved examples, datasets and downloadable Matlab code. Supported by sister volumes Foundations and Inference, and unique in its scale and depth, this textbook sequence is ideal for early-career researchers and graduate students across many courses in signal processing, machine learning, data and inference.
Presented in this volume are a number of new results concerning the extension theory and spectral theory of unbounded operators using the recent notions of boundary triplets and boundary relations. This approach relies on linear single-valued and multi-valued maps, isometric in a Krein space sense, and offers a basic framework for recent developments in system theory. Central to the theory are analytic tools such as Weyl functions, including Titchmarsh-Weyl m-functions and Dirichlet-to-Neumann maps. A wide range of topics is considered in this context from the abstract to the applied, including boundary value problems for ordinary and partial differential equations; infinite-dimensional perturbations; local point-interactions; boundary and passive control state/signal systems; extension theory of accretive, sectorial and symmetric operators; and Calkin's abstract boundary conditions. This accessible treatment of recent developments, written by leading researchers, will appeal to a broad range of researchers, students and professionals.