You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This proceedings volume presents selected, peer-reviewed contributions from the 26th National School on Algebra, which was held in Constanța, Romania, on August 26-September 1, 2018. The works cover three fields of mathematics: algebra, geometry and discrete mathematics, discussing the latest developments in the theory of monomial ideals, algebras of graphs and local positivity of line bundles. Whereas interactions between algebra and geometry go back at least to Hilbert, the ties to combinatorics are much more recent and are subject of immense interest at the forefront of contemporary mathematics research. Transplanting methods between different branches of mathematics has proved very frui...
This volume contains extended abstracts outlining selected talks and other selected presentations given by participants of the workshop "Positivity and Valuations", held at the Centre de Recerca Matemàtica (CRM) in Barcelona from February 22nd to 26th, 2016. They include brief research articles reporting new results, descriptions of preliminary work or open problems, and the outcome of work in groups initiated during the workshop. The general subject is the application of valuation theory to positivity questions in algebraic geometry. The topics covered range from purely algebraic problems like finite generation of semigroups and algebras defined by valuations, and properties of the associated Poincaré series, to more geometric questions like resolution of singularities and properties of Newton-Okounkov bodies, linked with non-archimedean geometry and tropical geometry. The book is intended for established researchers, as well as for PhD and postdoctoral students who want to learn more about the latest advances in these highly active areas of research.
The study of Lefschetz properties for Artinian algebras was motivated by the Lefschetz theory for projective manifolds. Recent developments have demonstrated important cases of the Lefschetz property beyond the original geometric settings, such as Coxeter groups or matroids. Furthermore, there are connections to other branches of mathematics, for example, commutative algebra, algebraic topology, and combinatorics. Important results in this area have been obtained by finding unexpected connections between apparently different topics. A conference in Cortona, Italy in September 2022 brought together researchers discussing recent developments and working on new problems related to the Lefschetz properties. The book will feature surveys on several aspects of the theory as well as articles on new results and open problems.
This volume contains the proceedings of the virtual conference on Hypergeometry, Integrability and Lie Theory, held from December 7–11, 2020, which was dedicated to the 50th birthday of Jasper Stokman. The papers represent recent developments in the areas of representation theory, quantum integrable systems and special functions of hypergeometric type.
This volume contains research papers and surveys reflecting the topics discussed at the EMS Summer School on Multigraded Algebra and Applications held in Romania in August 2016. The school, which served as the 24th National School on Algebra, presented the main research directions of combinatorial commutative algebra with a strong focus on its applications in combinatorics, statistics, and biology. Recent progress in the field has led to new insights and suggested algebraic techniques for solving real-world data analysis problems. The summer school and resulting proceedings volume have raised numerous novel questions and encouraged a more interdisciplinary approach for young researchers when considering problems in pure and applied mathematical research. Featured topics in this volume include toric rings, binomial edge ideals, Betti numbers for numerical semigroup rings, and Waldschmidt constants. Researchers and graduate students interested in the developments of the field will find this book useful for their studies.
This volume contains research and expository papers by some of the speakers at the 2005 AMS Summer Institute on Algebraic Geometry. Numerous papers delve into the geometry of various moduli spaces, including those of stable curves, stable maps, coherent sheaves, and abelian varieties.
This contributed volume is a follow-up to the 2013 volume of the same title, published in honor of noted Algebraist David Eisenbud's 65th birthday. It brings together the highest quality expository papers written by leaders and talented junior mathematicians in the field of Commutative Algebra. Contributions cover a very wide range of topics, including core areas in Commutative Algebra and also relations to Algebraic Geometry, Category Theory, Combinatorics, Computational Algebra, Homological Algebra, Hyperplane Arrangements, and Non-commutative Algebra. The book aims to showcase the area and aid junior mathematicians and researchers who are new to the field in broadening their background and gaining a deeper understanding of the current research in this area. Exciting developments are surveyed and many open problems are discussed with the aspiration to inspire the readers and foster further research.
The articles in this volume are the outcome of the Impanga Conference on Algebraic Geometry in 2010 at the Banach Center in Bedlewo. The following spectrum of topics is covered: K3 surfaces and Enriques surfaces Prym varieties and their moduli invariants of singularities in birational geometry differential forms on singular spaces Minimal Model Program linear systems toric varieties Seshadri and packing constants equivariant cohomology Thom polynomials arithmetic questions The main purpose of the volume is to give comprehensive introductions to the above topics, starting from an elementary level and ending with a discussion of current research. The first four topics are represented by the notes from the mini courses held during the conference. In the articles, the reader will find classical results and methods, as well as modern ones. This book is addressed to researchers and graduate students in algebraic geometry, singularity theory, and algebraic topology. Most of the material in this volume has not yet appeared in book form.
Two volume work containing a contemporary account on "Positivity in Algebraic Geometry". Both volumes also available as hardcover editions as Vols. 48 and 49 in the series "Ergebnisse der Mathematik und ihrer Grenzgebiete". A good deal of the material has not previously appeared in book form. Volume II is more at the research level and somewhat more specialized than Volume I. Volume II contains a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. Contains many concrete examples, applications, and pointers to further developments