Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Halide Perovskites
  • Language: en
  • Pages: 312

Halide Perovskites

Real insight from leading experts in the field into the causes of the unique photovoltaic performance of perovskite solar cells, describing the fundamentals of perovskite materials and device architectures. The authors cover materials research and development, device fabrication and engineering methodologies, as well as current knowledge extending beyond perovskite photovoltaics, such as the novel spin physics and multiferroic properties of this family of materials. Aimed at a better and clearer understanding of the latest developments in the hybrid perovskite field, this is a must-have for material scientists, chemists, physicists and engineers entering or already working in this booming field.

Halide Perovskite Semiconductors
  • Language: en
  • Pages: 517

Halide Perovskite Semiconductors

Halide Perovskite Semiconductors Enables readers to acquire a systematic and in-depth understanding of various fundamental aspects of halide perovskite semiconductors Halide Perovskite Semiconductors: Structures, Characterization, Properties, and Phenomena covers the most fundamental topics with regards to halide perovskites, including but not limited to crystal/defect theory, crystal chemistry, heterogeneity, grain boundaries, single-crystals/thin-films/nanocrystals synthesis, photophysics, solid-state ionics, spin physics, chemical (in)stability, carrier dynamics, hot carriers, surface and interfaces, lower-dimensional structures, and structural/functional characterizations. Included discu...

Perovskite Optoelectronic Devices
  • Language: en
  • Pages: 660

Perovskite Optoelectronic Devices

None

Hybrid Organic Inorganic Perovskites: Physical Properties And Applications (In 4 Volumes)
  • Language: en
  • Pages: 867

Hybrid Organic Inorganic Perovskites: Physical Properties And Applications (In 4 Volumes)

This four-volume handbook gives a state-of-the-art overview of hybrid organic inorganic perovskites, both two dimensional (2D) and three dimensional (3D), from synthesis and characterization and simulation to optoelectronic devices (such as solar cells and light emitting diodes), spintronics devices and catalysis application. The editors, coming from academia and national laboratory, are known for their didactic skills as well as their technical expertise. Coordinating the efforts of 30 expert authors in 21 chapters, they construct the story of hybrid perovskite structural and optical properties, electronic and spintronic response, laser action, and catalysis from varied viewpoints: material...

High-Quality Perovskite Films for Efficient and Stable Light-Emitting Diodes
  • Language: en
  • Pages: 61

High-Quality Perovskite Films for Efficient and Stable Light-Emitting Diodes

Metal halide perovskites have attracted significant attention for light-emitting applications, because of their excellent properties, such as high photoluminescence quantum yields (PLQYs), good charge mobility, narrow emission bandwidth, readily tunable emission spectra ranging from ultraviolet to near-infrared, and solution processability. Since the first room-temperature perovskite-based light-emitting diodes (PeLEDs) reported in 2014, tremendous efforts have been made to promote the efficiencies of PeLEDs, including theoretical simulation, materials design, and device engineering. To reach the ultimate goal of commercialization, PeLEDs with both high-efficiency and long-term operational s...

World Scientific Handbook Of Organic Optoelectronic Devices (Volumes 1 & 2)
  • Language: en
  • Pages: 909

World Scientific Handbook Of Organic Optoelectronic Devices (Volumes 1 & 2)

Organic (opto)electronic materials have received considerable attention due to their applications in perovskite and flexible electronics, OPVs and OLEDs and many others. Reflecting the rapid growth in research and development of organic (opto)electronic materials over the last few decades, this book provides a comprehensive coverage of the state of the art in an accessible format. It presents the most widely recognized fundamentals, principles, and mechanisms along with representative examples, key experimental data, and over 200 illustrative figures.

Surface Engineering of Graphene and Graphene Quantum Dots for Industrial and Medical Applications
  • Language: en
  • Pages: 563

Surface Engineering of Graphene and Graphene Quantum Dots for Industrial and Medical Applications

This book explores the synthesis, characterization, and applications of graphene and its derivatives. It covers advancements in improving graphene quality, surface engineering methods, and increasing material functionality. The topics covered include functionalized graphene, graphene quantum dots, novel device fabrication approaches, and diverse applications. The book also investigates the fundamental principles of characterizing graphene and its derivatives, along with electronic structures, theoretical investigations, and computational analyses relevant to their applications, synthesis, and properties. The chapters are organized to cover these topics, starting with a general overview of surface chemistry and its concepts for surface engineering of graphene, the fundamental properties of graphene and its derivatives, their synthesis, and applications in numerous fields, and concludes with a future perspective. Significantly, for the first time, both industrial and medical applications are gathered in one book, enabling us to discuss the confrontation of medical and industrial applications of graphene and graphene quantum dots.

Organic and Hybrid Solar Cells
  • Language: en
  • Pages: 359

Organic and Hybrid Solar Cells

With the increasing world-energy demand there is a growing necessity for clean and renewable energy. This book offers an introduction to these new types of solar cells and discusses fabrication, different architectures and their device physics on the bases of the author's teaching course on a master degree level. A comparison with conventional solar cells is given and the specialties of organic solar cells emphasized.

Optical Multidimensional Coherent Spectroscopy
  • Language: en
  • Pages: 305

Optical Multidimensional Coherent Spectroscopy

This book provides an introduction to optical multidimensional coherent spectroscopy, a relatively new method of studying materials based on using ultrashort light pulses to perform spectroscopy. The technique has been developed and perfected over the last 25 years, resulting in multiple experimental approaches and applications to a broad array of systems ranging from atoms and molecules to solids and biological systems. Indeed, while this method is most often used by physical chemists, it is also relevant to materials of interest to physicists, which is the primary focus of this book. As well as an introduction to the method, the book also provides tutorials on the interpretation of the rather complex spectra that is broadly applicable across all subfields, and finishes with a survey of several emerging material systems and a discussion of future directions.

Plasmonic Organic Solar Cells
  • Language: en
  • Pages: 114

Plasmonic Organic Solar Cells

  • Type: Book
  • -
  • Published: 2016-10-04
  • -
  • Publisher: Springer

This book explores the incorporation of plasmonic nanostructures into organic solar cells, which offers an attractive light trapping and absorption approach to enhance power conversion efficiencies. The authors review the latest advances in the field and discuss the characterization of these hybrid devices using a combination of optical and electrical probes. Transient optical spectroscopies such as transient absorption and transient photoluminescence spectroscopy offer powerful tools for observing charge carrier dynamics in plasmonic organic solar cells. In conjunction with device electrical characterizations, they provide unambiguous proof of the effect of the plasmonic nanostructures on the solar cells’ performance. However, there have been a number of controversies over the effects of such integration – where both enhanced and decreased performance have been reported. Importantly, the new insights into the photophysics and charge dynamics of plasmonic organic solar cells that these spectroscopy methods yield could be used to resolve these controversies and provide clear guidelines for device design and fabrication.