You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Unity of science was once a very popular idea among both philosophers and scientists. But it has fallen out of fashion, largely because of its association with reductionism and the challenge from multiple realisation. Pluralism and the disunity of science are the new norm, and higher-level natural kinds and special science laws are considered to have an important role in scientific practice. What kind of reductionism does multiple realisability challenge? What does it take to reduce one phenomenon to another? How do we determine which kinds are natural? What is the ontological basis of unity? In this Element, Tuomas Tahko examines these questions from a contemporary perspective, after a historical overview. The upshot is that there is still value in the idea of a unity of science. We can combine a modest sense of unity with pluralism and give an ontological analysis of unity in terms of natural kind monism. This title is available as Open Access on Cambridge Core.
CHEMISTRY STUDENT GUIDES. GUIDED BY STUDENTS For any student who has ever struggled with a mathematical understanding of chemistry, this book is for you. Mathematics is the essential tool for physical scientists. We know that confidence in using mathematics early on in a chemistry degree builds a solid foundation for further study. However, applying the abstract mathematics taught in schools to chemical phenomena is one of the biggest challenges that chemistry students face. In this book, we take a ‘chemistry-first’ approach. We link the mathematics to recognisable chemical concepts, building on high school chemistry, to facilitate deeper understanding. We cover the practical mathematica...
Every Thing Must Go argues that the only kind of metaphysics that can contribute to objective knowledge is one based specifically on contemporary science as it really is, and not on philosophers' a priori intuitions, common sense, or simplifications of science. In addition to showing how recent metaphysics has drifted away from connection with all other serious scholarly inquiry as a result of not heeding this restriction, they demonstrate how to build a metaphysics compatible with current fundamental physics ('ontic structural realism'), which, when combined with their metaphysics of the special sciences ('rainforest realism'), can be used to unify physics with the other sciences without re...
A kitchen is no different from most science laboratories and cookery may properly be regarded as an experimental science. Food preparation and cookery involve many processes which are well described by the physical sciences. Understanding the chemistry and physics of cooking should lead to improvements in performance in the kitchen. For those of us who wish to know why certain recipes work and perhaps more importantly why others fail, appreciating the underlying physical processes will inevitably help in unravelling the mysteries of the "art" of good cooking. Strong praise from the reviewers - "Will be stimulating for amateur cooks with an interest in following recipes and understanding how ...
Support Vectors Machines have become a well established tool within machine learning. They work well in practice and have now been used across a wide range of applications from recognizing hand-written digits, to face identification, text categorisation, bioinformatics, and database marketing. In this book we give an introductory overview of this subject. We start with a simple Support Vector Machine for performing binary classification before considering multi-class classification and learning in the presence of noise. We show that this framework can be extended to many other scenarios such as prediction with real-valued outputs, novelty detection and the handling of complex output structures such as parse trees. Finally, we give an overview of the main types of kernels which are used in practice and how to learn and make predictions from multiple types of input data. Table of Contents: Support Vector Machines for Classification / Kernel-based Models / Learning with Kernels
Demystifying technology transfer—an increasingly important but little-understood aspect of research universities' mission. How do we transfer the brilliance of university research results into new products, services, and medicines to benefit society? University research is creating the technologies of tomorrow in the fields of medicine, engineering, information technology, robotics, and artificial intelligence. These early-stage technologies need investment from existing and new businesses to benefit society. But how do we connect university research outputs with business and investors? This process, Tom Hockaday explains, is what university technology transfer is all about: identifying, p...
What we value, like, endorse, want, and prefer changes over the course of our lives. Richard Pettigrew presents a theory of rational decision making for agents who recognise that their values will change over time and whose decisions will affect those future times.