You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Algebra is a subject we have become acquainted with during most of our mathematical education, often in connection with the solution of equations. Algebra: Groups, Rings, and Fields, Second Edition deals with developments related to their solutions. The principle at the heart of abstract algebra, a subject that enables one to deduce sweeping conclusions from elementary premises, is that the process of abstraction enables us to solve a variety of such problems with economy of effort. This leads to the glorious world of mathematical discovery. This second edition follows the original three-pronged approach: the theory of finite groups, number theory, and Galois’ amazing theory of field exten...
This volume contains the proceedings of the Amitsur Centennial Symposium, held from November 1–4, 2021, virtually and at the Israel Institute for Advanced Studies (IIAS), The Hebrew University of Jerusalem, Jerusalem, Israel. Shimshon Amitsur was a pioneer in several branches of algebra, the leading algebraist in Israel for several decades who contributed major theorems, inspiring results, useful observations, and enlightening tricks to many areas of the field. The fifteen papers included in the volume represent the broad impact of Amitsur's work on such areas as the theory of finite simple groups, algebraic groups, PI-algebras and growth of rings, quadratic forms and division algebras, torsors and Severi-Brauer surfaces, Hopf algebras and braces, invariants, automorphisms and derivations.
This volume contains articles based on talks given at the Robert Brooks Memorial Conference on Geometry and Spectral Theory and the Workshop on Groups, Geometry and Dynamics held at Technion - the Israel Institute of Technology (Haifa). Robert Brooks' (1952 - 2002) broad range of mathematical interests is represented in the volume, which is devoted to various aspects of global analysis, spectral theory, the theory of Riemann surfaces, Riemannian and discrete geometry, and numbertheory. A survey of Brooks' work has been written by his close colleague, Peter Buser. Also included in the volume are articles on analytic topics, such as Szego's theorem, and on geometric topics, such as isoperimetric inequalities and symmetries of manifolds. The book is suitable for graduate studentsand researchers interested in various aspects of geometry and global analysis.
This volume contains the proceedings of the Virtual Conference on Noncommutative Rings and their Applications VII, in honor of Tariq Rizvi, held from July 5–7, 2021, and the Virtual Conference on Quadratic Forms, Rings and Codes, held on July 8, 2021, both of which were hosted by the Université d'Artois, Lens, France. The articles cover topics in commutative and noncommutative algebra and applications to coding theory. In some papers, applications of Frobenius rings, the skew group rings, and iterated Ore extensions to coding theory are discussed. Other papers discuss classical topics, such as Utumi rings, Baer rings, nil and nilpotent algebras, and Brauer groups. Still other articles are devoted to various aspects of the elementwise study for rings and modules. Lastly, this volume includes papers dealing with questions in homological algebra and lattice theory. The articles in this volume show the vivacity of the research of noncommutative rings and its influence on other subjects.
This book is an expanded text for a graduate course in commutative algebra, focusing on the algebraic underpinnings of algebraic geometry and of number theory. Accordingly, the theory of affine algebras is featured, treated both directly and via the theory of Noetherian and Artinian modules, and the theory of graded algebras is included to provide the foundation for projective varieties. Major topics include the theory of modules over a principal ideal domain, and its applications to matrix theory (including the Jordan decomposition), the Galois theory of field extensions, transcendence degree, the prime spectrum of an algebra, localization, and the classical theory of Noetherian and Artinia...
Functional Analysis for the Applied Mathematician is a self-contained volume providing a rigorous introduction to functional analysis and its applications. Students from mathematics, science, engineering, and certain social science and interdisciplinary programs will benefit from the material. It is accessible to graduate and advanced undergraduate students with a solid background in undergraduate mathematics and an appreciation of mathematical rigor. Students are called upon to actively engage with the material, to the point of proving some of the basic results or their straightforward generalizations, both within the text and within the generous set of exercises. Features: Replete with exercises and examples Suitable for graduate students and advanced undergraduates Develops the basics of functional analysis, exploring the interplay between algebraic linear space theory and topology Presents a variety of applications, often dealing with partial differential equations and their numerical approximation Doubles as a reference book with an extensive index listing the concepts and results
A comprehensive study of the main research done in polynomial identities over the last 25 years, including Kemer's solution to the Specht problem in characteristic O and examples in the characteristic p situation. The authors also cover codimension theory, starting with Regev's theorem and continuing through the Giambruno-Zaicev exponential rank. T
This volume contains the proceedings of the VBAC 2022 Conference on Moduli Spaces and Vector Bundles—New Trends, held in honor of Peter Newstead's 80th birthday, from July 25–29, 2022, at the University of Warwick, Coventry, United Kingdom. The papers focus on the theory of stability conditions in derived categories, non-reductive geometric invariant theory, Brill-Noether theory, and Higgs bundles and character varieties. The volume includes both survey and original research articles. Most articles contain substantial background and will be helpful to both novices and experts.
This volume contains the proceedings of the AMS Special Session on Combinatorial and Geometric Representation Theory, held virtually on November 20–21, 2021. The articles offer an engaging look into recent advancements in geometric representation theory. Despite diverse subject matters, a common thread uniting the articles of this volume is the power of geometric methods. The authors explore the following five contemporary topics in geometric representation theory: equivariant motivic Chern classes; equivariant Hirzebruch classes and equivariant Chern-Schwartz-MacPherson classes of Schubert cells; locally semialgebraic spaces, Nash manifolds, and their superspace counterparts; support varieties of Lie superalgebras; wreath Macdonald polynomials; and equivariant extensions and solutions of the Deligne-Simpson problem. Each article provides a well-structured overview of its topic, highlighting the emerging theories developed by the authors and their colleagues.
This book is devoted to arithmetic geometry with special attention given to the unramified Brauer group of algebraic varieties and its most striking applications in birational and Diophantine geometry. The topics include Galois cohomology, Brauer groups, obstructions to stable rationality, Weil restriction of scalars, algebraic tori, the Hasse principle, Brauer-Manin obstruction, and étale cohomology. The book contains a detailed presentation of an example of a stably rational but not rational variety, which is presented as series of exercises with detailed hints. This approach is aimed to help the reader understand crucial ideas without being lost in technical details. The reader will end up with a good working knowledge of the Brauer group and its important geometric applications, including the construction of unirational but not stably rational algebraic varieties, a subject which has become fashionable again in connection with the recent breakthroughs by a number of mathematicians.