You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is the third Proceedings of the Southeastern Lie Theory Workshop Series covering years 2015–21. During this time five workshops on different aspects of Lie theory were held at North Carolina State University in October 2015; University of Virginia in May 2016; University of Georgia in June 2018; Louisiana State University in May 2019; and College of Charleston in October 2021. Some of the articles by experts in the field describe recent developments while others include new results in categorical, combinatorial, and geometric representation theory of algebraic groups, Lie (super) algebras, and quantum groups, as well as on some related topics. The survey articles will be beneficial to junior researchers. This book will be useful to any researcher working in Lie theory and related areas.
This book surveys fundamental current topics in these two areas of research, emphasising the lively interaction between them. Volume 1 contains expository papers ideal for those entering the field.
This book is aimed to provide an introduction to local cohomology which takes cognizance of the breadth of its interactions with other areas of mathematics. It covers topics such as the number of defining equations of algebraic sets, connectedness properties of algebraic sets, connections to sheaf cohomology and to de Rham cohomology, Gröbner bases in the commutative setting as well as for $D$-modules, the Frobenius morphism and characteristic $p$ methods, finiteness properties of local cohomology modules, semigroup rings and polyhedral geometry, and hypergeometric systems arising from semigroups. The book begins with basic notions in geometry, sheaf theory, and homological algebra leading to the definition and basic properties of local cohomology. Then it develops the theory in a number of different directions, and draws connections with topology, geometry, combinatorics, and algorithmic aspects of the subject.
These proceedings comprise two workshops celebrating the accomplishments of David J. Benson on the occasion of his sixtieth birthday. The papers presented at the meetings were representative of the many mathematical subjects he has worked on, with an emphasis on group prepresentations and cohomology. The first workshop was titled "Groups, Representations, and Cohomology" and held from June 22 to June 27, 2015 at Sabhal Mòr Ostaig on the Isle of Skye, Scotland. The second was a combination of a summer school and workshop on the subject of "Geometric Methods in the Representation Theory of Finite Groups" and took place at the Pacific Institute for the Mathematical Sciences at the University of British Columbia in Vancouver from July 27 to August 5, 2016. The contents of the volume include a composite of both summer school material and workshop-derived survey articles on geometric and topological aspects of the representation theory of finite groups. The mission of the annually sponsored Summer Schools is to train and draw new students, and help Ph.D students transition to independent research.
This book is a lightly edited version of the unpublished manuscript Maximal Cohen–Macaulay modules and Tate cohomology over Gorenstein rings by Ragnar-Olaf Buchweitz. The central objects of study are maximal Cohen–Macaulay modules over (not necessarily commutative) Gorenstein rings. The main result is that the stable category of maximal Cohen–Macaulay modules over a Gorenstein ring is equivalent to the stable derived category and also to the homotopy category of acyclic complexes of projective modules. This assimilates and significantly extends earlier work of Eisenbud on hypersurface singularities. There is also an extensive discussion of duality phenomena in stable derived categories, extending Tate duality on cohomology of finite groups. Another noteworthy aspect is an extension of the classical BGG correspondence to super-algebras. There are numerous examples that illustrate these ideas. The text includes a survey of developments subsequent to, and connected with, Buchweitz's manuscript.
Tensors are ubiquitous in the sciences. The geometry of tensors is both a powerful tool for extracting information from data sets, and a beautiful subject in its own right. This book has three intended uses: a classroom textbook, a reference work for researchers in the sciences, and an account of classical and modern results in (aspects of) the theory that will be of interest to researchers in geometry. For classroom use, there is a modern introduction to multilinear algebra and to the geometry and representation theory needed to study tensors, including a large number of exercises. For researchers in the sciences, there is information on tensors in table format for easy reference and a summ...
This textbook provides a comprehensive introduction to the qualitative theory of ordinary differential equations. It includes a discussion of the existence and uniqueness of solutions, phase portraits, linear equations, stability theory, hyperbolicity and equations in the plane. The emphasis is primarily on results and methods that allow one to analyze qualitative properties of the solutions without solving the equations explicitly. The text includes numerous examples that illustrate in detail the new concepts and results as well as exercises at the end of each chapter. The book is also intended to serve as a bridge to important topics that are often left out of a course on ordinary differential equations. In particular, it provides brief introductions to bifurcation theory, center manifolds, normal forms and Hamiltonian systems.
The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally pre...
This contributed volume is a follow-up to the 2013 volume of the same title, published in honor of noted Algebraist David Eisenbud's 65th birthday. It brings together the highest quality expository papers written by leaders and talented junior mathematicians in the field of Commutative Algebra. Contributions cover a very wide range of topics, including core areas in Commutative Algebra and also relations to Algebraic Geometry, Category Theory, Combinatorics, Computational Algebra, Homological Algebra, Hyperplane Arrangements, and Non-commutative Algebra. The book aims to showcase the area and aid junior mathematicians and researchers who are new to the field in broadening their background and gaining a deeper understanding of the current research in this area. Exciting developments are surveyed and many open problems are discussed with the aspiration to inspire the readers and foster further research.