You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This second edition focuses on the thought process of digital design and implementation in the context of VLSI and system design. It covers the Verilog 2001 and Verilog 2005 RTL design styles, constructs and the optimization at the RTL and synthesis level. The book also covers the logic synthesis, low power, multiple clock domain design concepts and design performance improvement techniques. The book includes 250 design examples/illustrations and 100 exercise questions. This volume can be used as a core or supplementary text in undergraduate courses on logic design and as a text for professional and vocational coursework. In addition, it will be a hands-on professional reference and a self-study aid for hobbyists.
This book describes digital design techniques with exercises. The concepts and exercises discussed are useful to design digital logic from a set of given specifications. Looking at current trends of miniaturization, the contents provide practical information on the issues in digital design and various design optimization and performance improvement techniques at logic level. The book explains how to design using digital logic elements and how to improve design performance. The book also covers data and control path design strategies, architecture design strategies, multiple clock domain design and exercises , low-power design strategies and solutions at the architecture and logic-design level. The book covers 60 exercises with solutions and will be useful to engineers during the architecture and logic design phase. The contents of this book prove useful to hardware engineers, logic design engineers, students, professionals and hobbyists looking to learn and use the digital design techniques during various phases of design.
This book is designed to serve as a hands-on professional reference with additional utility as a textbook for upper undergraduate and some graduate courses in digital logic design. This book is organized in such a way that that it can describe a number of RTL design scenarios, from simple to complex. The book constructs the logic design story from the fundamentals of logic design to advanced RTL design concepts. Keeping in view the importance of miniaturization today, the book gives practical information on the issues with ASIC RTL design and how to overcome these concerns. It clearly explains how to write an efficient RTL code and how to improve design performance. The book also describes advanced RTL design concepts such as low-power design, multiple clock-domain design, and SOC-based design. The practical orientation of the book makes it ideal for training programs for practicing design engineers and for short-term vocational programs. The contents of the book will also make it a useful read for students and hobbyists.
This book describes simple to complex ASIC design practical scenarios using Verilog. It builds a story from the basic fundamentals of ASIC designs to advanced RTL design concepts using Verilog. Looking at current trends of miniaturization, the contents provide practical information on the issues in ASIC design and synthesis using Synopsys DC and their solution. The book explains how to write efficient RTL using Verilog and how to improve design performance. It also covers architecture design strategies, multiple clock domain designs, low-power design techniques, DFT, pre-layout STA and the overall ASIC design flow with case studies. The contents of this book will be useful to practicing hardware engineers, students, and hobbyists looking to learn about ASIC design and synthesis.
This book describes RTL design using Verilog, synthesis and timing closure for System On Chip (SOC) design blocks. It covers the complex RTL design scenarios and challenges for SOC designs and provides practical information on performance improvements in SOC, as well as Application Specific Integrated Circuit (ASIC) designs. Prototyping using modern high density Field Programmable Gate Arrays (FPGAs) is discussed in this book with the practical examples and case studies. The book discusses SOC design, performance improvement techniques, testing and system level verification, while also describing the modern Intel FPGA/XILINX FPGA architectures and their use in SOC prototyping. Further, the book covers the Synopsys Design Compiler (DC) and Prime Time (PT) commands, and how they can be used to optimize complex ASIC/SOC designs. The contents of this book will be useful to students and professionals alike.
This book introduces the reader to FPGA based design for RTL synthesis. It describes simple to complex RTL design scenarios using SystemVerilog. The book builds the story from basic fundamentals of FPGA based designs to advance RTL design and verification concepts using SystemVerilog. It provides practical information on the issues in the RTL design and verification and how to overcome these. It focuses on writing efficient RTL codes using SystemVerilog, covers design for the Xilinx FPGAs and also includes implementable code examples. The contents of this book cover improvement of design performance, assertion based verification, verification planning, and architecture and system testing using FPGAs. The book can be used for classroom teaching or as a supplement in lab work for undergraduate and graduate coursework as well as for professional development and training programs. It will also be of interest to researchers and professionals interested in the RTL design for FPGA and ASIC.
This book describes RTL design, synthesis, and timing closure strategies for SOC blocks. It covers high-level RTL design scenarios and challenges for SOC design. The book gives practical information on the issues in SOC and ASIC prototyping using modern high-density FPGAs. The book covers SOC performance improvement techniques, testing, and system-level verification. The book also describes the modern Xilinx FPGA architecture and their use in SOC prototyping. The book covers the Synopsys DC, PT commands, and use of them to constraint and to optimize SOC design. The contents of this book will be of use to students, professionals, and hobbyists alike.
This book covers basic fundamentals of logic design and advanced RTL design concepts using VHDL. The book is organized to describe both simple and complex RTL design scenarios using VHDL. It gives practical information on the issues in ASIC prototyping using FPGAs, design challenges and how to overcome practical issues and concerns. It describes how to write an efficient RTL code using VHDL and how to improve the design performance. The design guidelines by using VHDL are also explained with the practical examples in this book. The book also covers the ALTERA and XILINX FPGA architecture and the design flow for the PLDs. The contents of this book will be useful to students, researchers, and professionals working in hardware design and optimization. The book can also be used as a text for graduate and professional development courses.
This volume covers digital design techniques, exercises and applications. The book discusses digital design and implementation in the context of VLSI and embedded system design. It covers basic digital design techniques to high speed design techniques. The contents also cover performance improvement, optimization concepts and design case studies. It includes pedagogical features such as design examples and illustrations. This book will be a useful guide for hardware engineers, logic design engineers, professionals and hobbyists looking to learn and use the digital design to develop VLSI based algorithms, architectures and products.
Covering both the fundamentals and the in-depth topics related to Verilog digital design, both students and experts can benefit from reading this book by gaining a comprehensive understanding of how modern electronic products are designed and implemented. Principles of Verilog Digital Design contains many hands-on examples accompanied by RTL codes that together can bring a beginner into the digital design realm without needing too much background in the subject area. This book has a particular focus on how to transform design concepts into physical implementations using architecture and timing diagrams. Common mistakes a beginner or even an experienced engineer can make are summarized and addressed as well. Beyond the legal details of Verilog codes, the book additionally presents what uses Verilog codes have through some pertinent design principles. Moreover, students reading this book will gain knowledge about system-level design concepts. Several ASIC designs are illustrated in detail as well. In addition to design principles and skills, modern design methodology and how it is carried out in practice today are explored in depth as well.