You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This advanced book focuses on ordinary differential equations (ODEs) in Banach and more general locally convex spaces, most notably the ODEs on measures and various function spaces. It briefly discusses the fundamentals before moving on to the cutting edge research in linear and nonlinear partial and pseudo-differential equations, general kinetic equations and fractional evolutions. The level of generality chosen is suitable for the study of the most important nonlinear equations of mathematical physics, such as Boltzmann, Smoluchovskii, Vlasov, Landau-Fokker-Planck, Cahn-Hilliard, Hamilton-Jacobi-Bellman, nonlinear Schroedinger, McKean-Vlasov diffusions and their nonlocal extensions, mass-a...
The book provides a unique collection of in-depth mathematical, statistical, and modeling methods and techniques for life sciences, as well as their applications in a number of areas within life sciences. The book provides also with a range of new ideas that represent emerging frontiers in life sciences where the application of such quantitative methods and techniques is becoming increasingly important. Many areas within life sciences are becoming increasingly quantitative and the progress in those areas will be more and more dependent on the successful development of advanced mathematical, statistical and modelling methodologies and techniques. The state-of-the-art developments in such meth...
A nonlinear Markov evolution is a dynamical system generated by a measure-valued ordinary differential equation with the specific feature of preserving positivity. This feature distinguishes it from general vector-valued differential equations and yields a natural link with probability, both in interpreting results and in the tools of analysis. This brilliant book, the first devoted to the area, develops this interplay between probability and analysis. After systematically presenting both analytic and probabilistic techniques, the author uses probability to obtain deeper insight into nonlinear dynamics, and analysis to tackle difficult problems in the description of random and chaotic behavior. The book addresses the most fundamental questions in the theory of nonlinear Markov processes: existence, uniqueness, constructions, approximation schemes, regularity, law of large numbers and probabilistic interpretations. Its careful exposition makes the book accessible to researchers and graduate students in stochastic and functional analysis with applications to mathematical physics and systems biology.
The monograph is devoted mainly to the analytical study of the differential, pseudo-differential and stochastic evolution equations describing the transition probabilities of various Markov processes. These include (i) diffusions (in particular,degenerate diffusions), (ii) more general jump-diffusions, especially stable jump-diffusions driven by stable Lévy processes, (iii) complex stochastic Schrödinger equations which correspond to models of quantum open systems. The main results of the book concern the existence, two-sided estimates, path integral representation, and small time and semiclassical asymptotics for the Green functions (or fundamental solutions) of these equations, which represent the transition probability densities of the corresponding random process. The boundary value problem for Hamiltonian systems and some spectral asymptotics ar also discussed. Readers should have an elementary knowledge of probability, complex and functional analysis, and calculus.
"Probability and Partial Differential Equations in Modern Applied Mathematics" is devoted to the role of probabilistic methods in modern applied mathematics from the perspectives of both a tool for analysis and as a tool in modeling. There is a recognition in the applied mathematics research community that stochastic methods are playing an increasingly prominent role in the formulation and analysis of diverse problems of contemporary interest in the sciences and engineering. A probabilistic representation of solutions to partial differential equations that arise as deterministic models allows one to exploit the power of stochastic calculus and probabilistic limit theory in the analysis of de...
Complexity science is the study of systems with many interdependent components. Such systems - and the self-organization and emergent phenomena they manifest - lie at the heart of many challenges of global importance. This book is a coherent introduction to the mathematical methods used to understand complexity, with plenty of examples and real-world applications. It starts with the crucial concepts of self-organization and emergence, then tackles complexity in dynamical systems using differential equations and chaos theory. Several classes of models of interacting particle systems are studied with techniques from stochastic analysis, followed by a treatment of the statistical mechanics of complex systems. Further topics include numerical analysis of PDEs, and applications of stochastic methods in economics and finance. The book concludes with introductions to space-time phases and selfish routing. The exposition is suitable for researchers, practitioners and students in complexity science and related fields at advanced undergraduate level and above.
This work offers a highly useful, well developed reference on Markov processes, the universal model for random processes and evolutions. The wide range of applications, in exact sciences as well as in other areas like social studies, require a volume that offers a refresher on fundamentals before conveying the Markov processes and examples for
Toward the late 1990s, several research groups independently began developing new, related theories in mathematical finance. These theories did away with the standard stochastic geometric diffusion “Samuelson” market model (also known as the Black-Scholes model because it is used in that most famous theory), instead opting for models that allowed minimax approaches to complement or replace stochastic methods. Among the most fruitful models were those utilizing game-theoretic tools and the so-called interval market model. Over time, these models have slowly but steadily gained influence in the financial community, providing a useful alternative to classical methods. A self-contained monog...
This work offers a concise but wide-ranging introduction to games, including older (pre-game theory) party games and more recent topics like elections and evolutionary games and is generously spiced with excursions into philosophy, history, literature and politics.
Steadily growing applications of game theory in modern science (including psychology, biology and economics) require sources to provide rapid access in both classical tools and recent developments to readers with diverse backgrounds. This book on game theory, its applications and mathematical methods, is written with this objective in mind.The book gives a concise but wide-ranging introduction to games including older (pre-game theory) party games and more recent topics like elections and evolutionary games and is generously spiced with excursions into philosophy, history, literature and politics. A distinguished feature is the clear separation of the text into two parts: elementary and adva...