You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The aim of this comparatively short textbook is a sufficiently full exposition of the fundamentals of the theory of functions of a complex variable to prepare the student for various applications. Several important applications in physics and engineering are considered in the book. This thorough presentation includes all theorems (with a few exceptions) presented with proofs. No previous exposure to complex numbers is assumed. The textbook can be used in one-semester or two-semester courses. In one respect this book is larger than usual, namely in the number of detailed solutions of typical problems. This, together with various problems, makes the book useful both for self- study and for the...
Differential equations is one of the oldest subjects in modern mathematics. It was not long after Newton and Leibniz invented the calculus that Bernoulli and Euler and others began to consider the heat equation and the wave equation of mathematical physics. Newton himself solved differential equations both in the study of planetary motion and also in his consideration of optics. Today differential equations is the centerpiece of much of engineering, of physics, of significant parts of the life sciences, and in many areas of mathematical modeling. This text describes classical ideas and provides an entree to the newer ones. The author pays careful attention to advanced topics like the Laplace...
This book has enjoyed considerable use and appreciation during its first four editions. With hundreds of students having learned out of early editions, the author continues to find ways to modernize and maintain a unique presentation. What sets the book apart is the excellent writing style, exposition, and unique and thorough sets of exercises. This edition offers a more instructive preface to assist instructors on developing the course they prefer. The prerequisites are more explicit and provide a roadmap for the course. Sample syllabi are included. As would be expected in a fifth edition, the overall content and structure of the book are sound. This new edition offers a more organized trea...
When a student of mathematics studies abstract algebra, he or she inevitably faces questions in the vein of, "What is abstract algebra" or "What makes it abstract?" Algebra, in its broadest sense, describes a way of thinking about classes of sets equipped with binary operations. In high school algebra, a student explores properties of operations (+, −, ×, and ÷) on real numbers. Abstract algebra studies properties of operations without specifying what types of number or object we work with. Any theorem established in the abstract context holds not only for real numbers but for every possible algebraic structure that has operations with the stated properties. This textbook intends to serv...
Wavelet Transforms: Kith and Kin serves as an introduction to contemporary aspects of time-frequency analysis encompassing the theories of Fourier transforms, wavelet transforms and their respective offshoots. This book is the first of its kind totally devoted to the treatment of continuous signals and it systematically encompasses the theory of Fourier transforms, wavelet transforms, geometrical wavelet transforms and their ramifications. The authors intend to motivate and stimulate interest among mathematicians, computer scientists, engineers and physical, chemical and biological scientists. The text is written from the ground up with target readers being senior undergraduate and first-yea...
Written in honor of Victor Havin (1933–2015), this volume presents a collection of surveys and original papers on harmonic and complex analysis, function spaces and related topics, authored by internationally recognized experts in the fields. It also features an illustrated scientific biography of Victor Havin, one of the leading analysts of the second half of the 20th century and founder of the Saint Petersburg Analysis Seminar. A complete list of his publications, as well as his public speech "Mathematics as a source of certainty and uncertainty", presented at the Doctor Honoris Causa ceremony at Linköping University, are also included.
This is an introductory single-term numerical analysis text with a modern scientific computing flavor. It offers an immediate immersion in numerical methods featuring an up-to-date approach to computational matrix algebra and an emphasis on methods used in actual software packages, always highlighting how hardware concerns can impact the choice of algorithm. It fills the need for a text that is mathematical enough for a numerical analysis course yet applied enough for students of science and engineering taking it with practical need in mind. The standard methods of numerical analysis are rigorously derived with results stated carefully and many proven. But while this is the focus, topics suc...
The purpose of this unique textbook is to bridge the gap between the need for numerical solutions to modeling techniques through computer simulations to develop skill in employing sensitivity analysis to biological and life sciences applications. The underpinning mathematics is minimalized. The focus is on the consequences, implementation, and application. Historical context motivates the models. An understanding of the earliest models provides insight into more complicated ones. While the text avoids getting mired in the details of numerical analysis, it demonstrates how to use numerical methods and provides core codes that can be readily altered to fit a variety of situations. Numerical sc...
The first part of these lecture notes is an introduction to potential theory to prepare the reader for later parts, which can be used as the basis for a series of advanced lectures/seminars on potential theory/harmonic analysis. Topics covered in the book include minimal thinness, quasiadditivity of capacity, applications of singular integrals to potential theory, L(p)-capacity theory, fine limits of the Nagel-Stein boundary limit theorem and integrability of superharmonic functions. The notes are written for an audience familiar with the theory of integration, distributions and basic functional analysis.
None