You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In Nonlinear Dynamics and Pattern Formation in Semiconductors and Devices the contributions of the International Conference on Nonlinear Dynamics and Pattern Formation in the Natural Environment (ICPF '94) in Noordwijkerhout, held by many internationally reknown experts, are compiled. To connect the field of semiconductor physics with the theory of nonequilibrium dissipative systems, the emphasis lies on the study of localized structures, their stability and bifurcation behaviour. A point of special interest is the evolution of dynamic structures and the investigation of more complex structures arising from interactions between these structures. Possible applications of nonlinear effects and self-organization phenomena with respect to signal processing are discussed.
Since 1972 the Schools on Nonlinear Physics in Gorky have been a meeting place for Soviet scientists working in this field. Instead of producing for the first time English proceedings it has been decided to present a good cross section of nonlinear physics in the USSR. Thus the participants at the last School were invited to provide English reviews and research papers for these two volumes (which in the years to come will be followed by the proceedings of forthcoming schools). The first volume starts with a historical overview of nonlinear dynamics from Poincaré to the present day and touches topics like attractors, nonlinear oscillators and waves, turbulence, pattern formation, and dynamics of structures in nonequilibrium dissipative media. It then deals with structures, bistabilities, instabilities, chaos, dynamics of defects in 1d systems, self-organizations, solitons, spatio-temporal structures and wave collapse in optical systems, lasers, plasmas, reaction-diffusion systems and solids.
Culled from the thousands of papers published in American Institute of
This reference describes standard and nonstandard coordination modes of ligands in complexes, the intricacies of polyhedron-programmed and regioselective synthesis, and the controlled creation of coordination compounds such as molecular and hn-p-complexes, chelates, and homo- and hetero-nuclear compounds. It offers a clear and concise review of modern synthetic techniques of metal complexes as well as lesser known gas- and solid-phase synthesis, electrosynthesis, and microwave and ultrasonic treatment of the reaction system. The authors pay special attention to o-hydroxyazomethines and their S-, Se-containing analogues, b-diketones, and quinines, among others, and examine the immediate interaction of ligands and metal salts or carbonyls.
This book contributes to a deeper understanding of landscape and regional modelling in general, and its broad range of facets with respect to various landscape parameters. It presents model approaches for a number of ecological and socio-economic landscape indicators, and also describes spatial decision support systems (DSS), frameworks, and model-based tools, which are prerequisites for deriving sustainable decision and solution strategies for the protection of comprehensively functioning landscapes. While it mainly focuses on the latest research findings in regional modelling and DSS in Europe, it also highlights the work of scientists from Russia. The book is intended for landscape modellers, scientists from various fields of landscape research, university teaching staff, and experts in landscape planning and management, landscape conservation and landscape policy.
None
This book examines exciting advancements in the field of ceramics, including nanotechnology, clean energy, and tribology as well as fundamental concepts like defects and structure. It is a comprehensive discussion on how today’s ceramics are processed and used in many of today’s critical technologies. It discusses current techniques for synthesizing durable and cost-effective ceramic components with biocompatibility, complexity, and high precision. This book is a comprehensive reference for researchers, engineers, dental clinicians, biologists, academics, and students interested in ceramics.
None
This book gives an introduction to the mathematical theory of cooperative behavior in active systems of various origins, both natural and artificial. It is based on a lecture course in synergetics which I held for almost ten years at the University of Moscow. The first volume deals mainly with the problems of pattern fonnation and the properties of self-organized regular patterns in distributed active systems. It also contains a discussion of distributed analog information processing which is based on the cooperative dynamics of active systems. The second volume is devoted to the stochastic aspects of self-organization and the properties of self-established chaos. I have tried to avoid delvi...