You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Stochastic dynamical systems and stochastic analysis are of great interests not only to mathematicians but also to scientists in other areas. Stochastic dynamical systems tools for modeling and simulation are highly demanded in investigating complex phenomena in, for example, environmental and geophysical sciences, materials science, life sciences, physical and chemical sciences, finance and economics.The volume reflects an essentially timely and interesting subject and offers reviews on the recent and new developments in stochastic dynamics and stochastic analysis, and also some possible future research directions. Presenting a dozen chapters of survey papers and research by leading experts in the subject, the volume is written with a wide audience in mind ranging from graduate students, junior researchers to professionals of other specializations who are interested in the subject.
This book combines theory and practice to analyze risk measurement from different points of view. The limitations of a model depend on the framework on which it has been built as well as specific assumptions, and risk managers need to be aware of these when assessing risks. The authors investigate the impact of these limitations, propose an alternative way of thinking that challenges traditional assumptions, and also provide novel solutions. Starting with the traditional Value at Risk (VaR) model and its limitations, the book discusses concepts like the expected shortfall, the spectral measure, the use of the spectrum, and the distortion risk measures from both a univariate and a multivariate perspective.
This volume contains survey articles on various aspects of stochastic partial differential equations (SPDEs) and their applications in stochastic control theory and in physics.The topics presented in this volume are:This book is intended not only for graduate students in mathematics or physics, but also for mathematicians, mathematical physicists, theoretical physicists, and science researchers interested in the physical applications of the theory of stochastic processes.
This volume contains a collection of original papers, associated with the International Conference on Partial Differential Equations, held in Potsdam, July 29 to August 2, 1996. The conference has taken place every year on a high scientific level since 1991; this event is connected with the activities of the Max Planck Research Group for Partial Differential Equations at Potsdam. Outstanding researchers and specialists from Armenia, Belarus, Belgium, Bulgaria, Canada, China, France, Germany, Great Britain, India, Israel, Italy, Japan, Poland, Romania, Russia, Spain, Sweden, Switzerland, Ukraine, and the USA contribute to this volume. The main topics concern recent progress in partial differential equations, microlocal analysis, pseudo-differential operators on manifolds with singularities, aspects in differential geometry and index theory, operator theory and operator algebras, stochastic spectral analysis, semigroups, Dirichlet forms, Schrodinger operators, semiclassical analysis, and scattering theory.
In this thesis, we analyze various problems of dynamic portfolio optimization as well as green capital requirements under risk constraints and incomplete information. First, we examine the problem of optimal expected utility under the constraint of a utility-based shortfall risk measure in an incomplete market. The existence and uniqueness of an optimal solution to the problem are shown using a Lagrange multiplier and duality methods. Second, we consider the optimization problem under various levels of the investor’s information. By using martingale representation theorems, we demonstrate the existence and uniqueness of optimal solutions, which differ in their market dynamics. Third, we analyze the effects of green- and brownwashing on banks’ lending to firms, on the regulator’s deposit insurance subsidy, and on carbon emissions under different green capital requirement functions. Furthermore, we show that green capital requirements may compromise financial stability.
A key pedagogical feature of the textbook is the accessible approach to probability concepts through examples with explanations and problems with solutions. The reader is encouraged to simulate in Matlab random experiments and to explore the theoretical aspects of the probabilistic models behind the studied experiments. By this appropriate balance between simulations and rigorous mathematical approach, the reader can experience the excitement of comprehending basic concepts and can develop the intuitive thinking in solving problems. The current textbook does not contain proofs for the stated theorems, but corresponding references are given. Moreover, the given Matlab codes and detailed solutions make the textbook accessible to researchers and undergraduate students, by learning various techniques from probability theory and its applications in other fields. This book is intended not only for students of mathematics but also for students of natural sciences, engineering, computer science and for science researchers, who possess the basic knowledge of calculus for the mathematical concepts of the textbook and elementary programming skills for the Matlab simulations.
Keine ausführliche Beschreibung für "Oktober 1981" verfügbar.
The theory of Vector Optimization is developed by a systematic usage of infimum and supremum. In order to get existence and appropriate properties of the infimum, the image space of the vector optimization problem is embedded into a larger space, which is a subset of the power set, in fact, the space of self-infimal sets. Based on this idea we establish solution concepts, existence and duality results and algorithms for the linear case. The main advantage of this approach is the high degree of analogy to corresponding results of Scalar Optimization. The concepts and results are used to explain and to improve practically relevant algorithms for linear vector optimization problems.