You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The practice of business is changing. More and more companies are amassing larger and larger amounts of data, and storing them in bigger and bigger data bases. Consequently, successful applications of data-driven decision making are plentiful and increasing on a daily basis. This book will motivate the need for data and data-driven solutions, using real data from real business scenarios. It will allow managers to better interact with personnel specializing in analytics by exposing managers and decision makers to the key ideas and concepts of data-driven decision making. Business Analytics for Managers conveys ideas and concepts from both statistics and data mining with the goal of extracting...
A Symposium was held on February 25, 2006 in honor of the 80th birthday of Saul I. Gass and his major contributions to the field of operations research over 50 years. This volume includes articles from each of the Symposium speakers plus 16 other articles from friends, colleagues, and former students. Each contributor offers a forward-looking perspective on the future development of the field.
An introduction to risk assessment that utilizes key theory and state-of-the-art applications With its balanced coverage of theory and applications along with standards and regulations, Risk Assessment: Theory, Methods, and Applications serves as a comprehensive introduction to the topic. The book serves as a practical guide to current risk analysis and risk assessment, emphasizing the possibility of sudden, major accidents across various areas of practice from machinery and manufacturing processes to nuclear power plants and transportation systems. The author applies a uniform framework to the discussion of each method, setting forth clear objectives and descriptions, while also shedding li...
Computer Science and Operations Research continue to have a synergistic relationship and this book represents the results of the cross-fertilization between OR/MS and CS/AI. It is this interface of OR/CS that makes possible advances that could not have been achieved in isolation. Taken collectively, these articles are indicative of the state of the art in the interface between OR/MS and CS/AI and of the high-caliber research being conducted by members of the INFORMS Computing Society.
The growth of biostatistics has been phenomenal in recent years and has been marked by considerable technical innovation in both methodology and computational practicality. One area that has experienced significant growth is Bayesian methods. The growing use of Bayesian methodology has taken place partly due to an increasing number of practitioners valuing the Bayesian paradigm as matching that of scientific discovery. In addition, computational advances have allowed for more complex models to be fitted routinely to realistic data sets. Through examples, exercises and a combination of introductory and more advanced chapters, this book provides an invaluable understanding of the complex world...
Customer survey studies deals with customers, consumers and user satisfaction from a product or service. In practice, many of the customer surveys conducted by business and industry are analyzed in a very simple way, without using models or statistical methods. Typical reports include descriptive statistics and basic graphical displays. As demonstrated in this book, integrating such basic analysis with more advanced tools, provides insights on non-obvious patterns and important relationships between the survey variables. This knowledge can significantly affect the conclusions derived from a survey. Key features: Provides an integrated, case-studies based approach to analysing customer survey...
Modeling and Analysis of Compositional Data presents a practical and comprehensive introduction to the analysis of compositional data along with numerous examples to illustrate both theory and application of each method. Based upon short courses delivered by the authors, it provides a complete and current compendium of fundamental to advanced methodologies along with exercises at the end of each chapter to improve understanding, as well as data and a solutions manual which is available on an accompanying website. Complementing Pawlowsky-Glahn’s earlier collective text that provides an overview of the state-of-the-art in this field, Modeling and Analysis of Compositional Data fills a gap in the literature for a much-needed manual for teaching, self learning or consulting.
Microeconomics is the most engaging introductory economics resource available to students today. Using real businesses examples to show how managers use economics to make real decisions every day, the subject is made relevant and meaningful. Each chapter of the text opens with a case study featuring a real business or real business situation, refers to the study throughout the chapter, and concludes with An Inside Look—a news article format which illustrates how a key principle covered in the chapter relates to real business situations or was used by a real company to make a real business decision. Solved problems in every chapter motivate learners to confidently connect with the theory to solve economic problems and analyse current economic events.
Helping readers accurately price a vast array of derivatives, this self-contained text explains how to solve complex functional equations through numerical methods. It addresses key computational methods in finance, including transform techniques, the finite difference method, and Monte Carlo simulation. Developed from his courses at Columbia University and the Courant Institute of New York University, the author also covers model calibration and optimization and describes techniques, such as Kalman and particle filters, for parameter estimation.
The development and application of multivariate statistical techniques in process monitoring has gained substantial interest over the past two decades in academia and industry alike. Initially developed for monitoring and fault diagnosis in complex systems, such techniques have been refined and applied in various engineering areas, for example mechanical and manufacturing, chemical, electrical and electronic, and power engineering. The recipe for the tremendous interest in multivariate statistical techniques lies in its simplicity and adaptability for developing monitoring applications. In contrast, competitive model, signal or knowledge based techniques showed their potential only whenever ...