You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Genetic Programming Theory and Practice IV was developed from the fourth workshop at the University of Michigan’s Center for the Study of Complex Systems. The workshop was convened in May 2006 to facilitate the exchange of ideas and information related to the rapidly advancing field of Genetic Programming (GP). The text explores the synergy between theory and practice, producing a comprehensive view of the state of the art in GP application.
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: multi-objective genetic programming, learning heuristics, Kaizen programming, Evolution of Everything (EvE), lexicase selection, behavioral program synthesis, symbolic regression with noisy training data, graph databases, and multidimensional clustering. It also covers several chapters on best practices and lesson learned from hands-on experience. Additional application areas include financial operations, genetic analysis, and predicting product choice. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
The Italian community in Artificial Life and Evolutionary computation has grown remarkably in recent years, and this book is the first broad collection of its major interests and achievements (including contributions from foreign countries). The contributions in Artificial Life as well as in Evolutionary Computation allow one to see the deep connections between the two fields. The topics addressed are extremely relevant for present day research in Artificial Life and in Evolutionary Computation, which include important contributions from very well-known researchers. The volume provides a very broad picture of the Italian activities in this field. Sample Chapter(s). Chapter 1: Cognitive Dynam...
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: exploiting subprograms in genetic programming, schema frequencies in GP, Accessible AI, GP for Big Data, lexicase selection, symbolic regression techniques, co-evolution of GP and LCS, and applying ecological principles to GP. It also covers several chapters on best practices and lessons learned from hands-on experience. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics in this volume include: gene expression regulation, novel genetic models for glaucoma, inheritable epigenetics, combinators in genetic programming, sequential symbolic regression, system dynamics, sliding window symbolic regression, large feature problems, alignment in the error space, HUMIE winners, Boolean multiplexer function, and highly distributed genetic programming systems. Application areas include chemical process control, circuit design, financial data mining and bioinformatics. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
Genetic Programming Theory and Practice III provides both researchers and industry professionals with the most recent developments in GP theory and practice by exploring the emerging interaction between theory and practice in the cutting-edge, machine learning method of Genetic Programming (GP). The contributions developed from a third workshop at the University of Michigan's Center for the Study of Complex Systems, where leading international genetic programming theorists from major universities and active practitioners from leading industries and businesses meet to examine and challenge how GP theory informs practice and how GP practice impacts GP theory. Applications are from a wide range of domains, including chemical process control, informatics, and circuit design, to name a few.
Genetic Programming Theory and Practice V was developed from the fifth workshop at the University of Michigan’s Center for the Study of Complex Systems. It aims to facilitate the exchange of ideas and information related to the rapidly advancing field of Genetic Programming (GP). This volume is a unique and indispensable tool for academics, researchers and industry professionals involved in GP, evolutionary computation, machine learning and artificial intelligence.
This book brings together some of the most impactful researchers in the field of Genetic Programming (GP), each one working on unique and interesting intersections of theoretical development and practical applications of this evolutionary-based machine learning paradigm. Topics of particular interest for this year ́s book include powerful modeling techniques through GP-based symbolic regression, novel selection mechanisms that help guide the evolutionary process, modular approaches to GP, and applications in cybersecurity, biomedicine and program synthesis, as well as papers by practitioner of GP that focus on usability and real-world results. In summary, readers will get a glimpse of the current state of the art in GP research.
Genetic Programming Theory and Practice VI was developed from the sixth workshop at the University of Michigan’s Center for the Study of Complex Systems to facilitate the exchange of ideas and information related to the rapidly advancing field of Genetic Programming (GP). Contributions from the foremost international researchers and practitioners in the GP arena examine the similarities and differences between theoretical and empirical results on real-world problems. The text explores the synergy between theory and practice, producing a comprehensive view of the state of the art in GP application. These contributions address several significant interdependent themes which emerged from this year’s workshop, including: (1) Making efficient and effective use of test data. (2) Sustaining the long-term evolvability of our GP systems. (3) Exploiting discovered subsolutions for reuse. (4) Increasing the role of a Domain Expert.