Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Stochastic PDEs and Dynamics
  • Language: en
  • Pages: 228

Stochastic PDEs and Dynamics

This book explains mathematical theories of a collection of stochastic partial differential equations and their dynamical behaviors. Based on probability and stochastic process, the authors discuss stochastic integrals, Ito formula and Ornstein-Uhlenbeck processes, and introduce theoretical framework for random attractors. With rigorous mathematical deduction, the book is an essential reference to mathematicians and physicists in nonlinear science. Contents: Preliminaries The stochastic integral and Itô formula OU processes and SDEs Random attractors Applications Bibliography Index

Fractional Partial Differential Equations and Their Numerical Solutions
  • Language: en
  • Pages: 348

Fractional Partial Differential Equations and Their Numerical Solutions

This book aims to introduce some new trends and results on the study of the fractional differential equations, and to provide a good understanding of this field to beginners who are interested in this field, which is the authors' beautiful hope. This book describes theoretical and numerical aspects of the fractional partial differential equations, including the authors' researches in this field, such as the fractional Nonlinear Schrödinger equations, fractional Landau–Lifshitz equations and fractional Ginzburg–Landau equations. It also covers enough fundamental knowledge on the fractional derivatives and fractional integrals, and enough background of the fractional PDEs. Contents:Physic...

Vanishing Viscosity Method
  • Language: en
  • Pages: 569

Vanishing Viscosity Method

The book summarizes several mathematical aspects of the vanishing viscosity method and considers its applications in studying dynamical systems such as dissipative systems, hyperbolic conversion systems and nonlinear dispersion systems. Including original research results, the book demonstrates how to use such methods to solve PDEs and is an essential reference for mathematicians, physicists and engineers working in nonlinear science. Contents: Preface Sobolev Space and Preliminaries The Vanishing Viscosity Method of Some Nonlinear Evolution System The Vanishing Viscosity Method of Quasilinear Hyperbolic System Physical Viscosity and Viscosity of Difference Scheme Convergence of Lax–Friedrichs Scheme, Godunov Scheme and Glimm Scheme Electric–Magnetohydrodynamic Equations References

Attractors and Methods
  • Language: en
  • Pages: 413

Attractors and Methods

This two-volume work presents state-of-the-art mathematical theories and results on infinite-dimensional dynamical systems. Inertial manifolds, approximate inertial manifolds, discrete attractors and the dynamics of small dissipation are discussed in detail. The unique combination of mathematical rigor and physical background makes this work an essential reference for researchers and graduate students in applied mathematics and physics. The main emphasis in the fi rst volume is on the existence and properties for attractors and inertial manifolds. This volume highlights the use of modern analytical tools and methods such as the geometric measure method, center manifold theory in infinite dimensions, the Melnihov method, spectral analysis and so on for infinite-dimensional dynamical systems. The second volume includes the properties of global attractors, the calculation of discrete attractors, structures of small dissipative dynamical systems, and the existence and stability of solitary waves. Contents Discrete attractor and approximate calculation Some properties of global attractor Structures of small dissipative dynamical systems Existence and stability of solitary waves

Attractors and Inertial Manifolds
  • Language: en
  • Pages: 438

Attractors and Inertial Manifolds

This two-volume work presents state-of-the-art mathematical theories and results on infinite-dimensional dynamical systems. Inertial manifolds, approximate inertial manifolds, discrete attractors and the dynamics of small dissipation are discussed in detail. The unique combination of mathematical rigor and physical background makes this work an essential reference for researchers and graduate students in applied mathematics and physics. The main emphasis in the first volume is on the mathematical analysis of attractors and inertial manifolds. This volume deals with the existence of global attractors, inertial manifolds and with the estimation of Hausdorff fractal dimension for some dissipative nonlinear evolution equations in modern physics. Known as well as many new results about the existence, regularity and properties of inertial manifolds and approximate inertial manifolds are also presented in the first volume. The second volume will be devoted to modern analytical tools and methods in infinite-dimensional dynamical systems. Contents Attractor and its dimension estimation Inertial manifold The approximate inertial manifold

Adaptive Stochastic Methods
  • Language: en
  • Pages: 290

Adaptive Stochastic Methods

This monograph develops adaptive stochastic methods in computational mathematics. The authors discuss the basic ideas of the algorithms and ways to analyze their properties and efficiency. Methods of evaluation of multidimensional integrals and solutions of integral equations are illustrated by multiple examples from mechanics, theory of elasticity, heat conduction and fluid dynamics. Contents Part I: Evaluation of Integrals Fundamentals of the Monte Carlo Method to Evaluate Definite Integrals Sequential Monte Carlo Method and Adaptive Integration Methods of Adaptive Integration Based on Piecewise Approximation Methods of Adaptive Integration Based on Global Approximation Numerical Experiments Adaptive Importance Sampling Method Based on Piecewise Constant Approximation Part II: Solution of Integral Equations Semi-Statistical Method of Solving Integral Equations Numerically Problem of Vibration Conductivity Problem on Ideal-Fluid Flow Around an Airfoil First Basic Problem of Elasticity Theory Second Basic Problem of Elasticity Theory Projectional and Statistical Method of Solving Integral Equations Numerically

Nonlinear PDEs: A Dynamical Systems Approach
  • Language: en
  • Pages: 575

Nonlinear PDEs: A Dynamical Systems Approach

This is an introductory textbook about nonlinear dynamics of PDEs, with a focus on problems over unbounded domains and modulation equations. The presentation is example-oriented, and new mathematical tools are developed step by step, giving insight into some important classes of nonlinear PDEs and nonlinear dynamics phenomena which may occur in PDEs. The book consists of four parts. Parts I and II are introductions to finite- and infinite-dimensional dynamics defined by ODEs and by PDEs over bounded domains, respectively, including the basics of bifurcation and attractor theory. Part III introduces PDEs on the real line, including the Korteweg-de Vries equation, the Nonlinear Schrödinger eq...

Solitons
  • Language: en
  • Pages: 376

Solitons

This book provides an up-to-date overview of mathematical theories and research results on solitons, presenting related mathematical methods and applications as well as numerical experiments. Different types of soliton equations are covered along with their dynamical behaviors and applications from physics, making the book an essential reference for researchers and graduate students in applied mathematics and physics. Contents Introduction Inverse scattering transform Asymptotic behavior to initial value problems for some integrable evolution nonlinear equations Interaction of solitons and its asymptotic properties Hirota method Bäcklund transformations and the infinitely many conservation laws Multi-dimensional solitons and their stability Numerical computation methods for some nonlinear evolution equations The geometric theory of solitons Global existence and blow up for the nonlinear evolution equations The soliton movements of elementary particles in nonlinear quantum field The theory of soliton movement of superconductive features The soliton movements in condensed state systemsontents

Differential and Integral Equations
  • Language: en
  • Pages: 620

Differential and Integral Equations

  • Type: Book
  • -
  • Published: 2009
  • -
  • Publisher: Unknown

None

Non-Newtonian Fluids
  • Language: en
  • Pages: 350

Non-Newtonian Fluids

This book provides an up-to-date overview of mathematical theories and research results in non-Newtonian fluid dynamics. Related mathematical models, solutions as well as numerical experiments are discussed. Fundamental theories and practical applications make it a handy reference for researchers and graduate students in mathematics, physics and engineering. Contents Non-Newtonian fluids and their mathematical model Global solutions to the equations of non-Newtonian fluids Global attractors of incompressible non-Newtonian fluids Global attractors of modified Boussinesq approximation Inertial manifolds of incompressible non-Newtonian fluids The regularity of solutions and related problems Global attractors and time-spatial chaos Non-Newtonian generalized fluid and their applications