Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Statistics on Special Manifolds
  • Language: en
  • Pages: 425

Statistics on Special Manifolds

Covering statistical analysis on the two special manifolds, the Stiefel manifold and the Grassmann manifold, this book is designed as a reference for both theoretical and applied statisticians. It will also be used as a textbook for a graduate course in multivariate analysis. It is assumed that the reader is familiar with the usual theory of univariate statistics and a thorough background in mathematics, in particular, knowledge of multivariate calculation techniques.

Multivariate Analysis and Its Applications
  • Language: en
  • Pages: 502

Multivariate Analysis and Its Applications

  • Type: Book
  • -
  • Published: 1994
  • -
  • Publisher: IMS

None

Multivariate Nonparametric Methods with R
  • Language: en
  • Pages: 239

Multivariate Nonparametric Methods with R

This book offers a new, fairly efficient, and robust alternative to analyzing multivariate data. The analysis of data based on multivariate spatial signs and ranks proceeds very much as does a traditional multivariate analysis relying on the assumption of multivariate normality; the regular L2 norm is just replaced by different L1 norms, observation vectors are replaced by spatial signs and ranks, and so on. A unified methodology starting with the simple one-sample multivariate location problem and proceeding to the general multivariate multiple linear regression case is presented. Companion estimates and tests for scatter matrices are considered as well. The R package MNM is available for c...

Multivariate Analysis, Design of Experiments, and Survey Sampling
  • Language: en
  • Pages: 692

Multivariate Analysis, Design of Experiments, and Survey Sampling

  • Type: Book
  • -
  • Published: 1999-04-29
  • -
  • Publisher: CRC Press

"Describes recent developments and surveys important topics in the areas of multivariate analysis, design of experiments, and survey sampling. Features the work of nearly 50 international leaders."

An Introduction to Copulas
  • Language: en
  • Pages: 227

An Introduction to Copulas

Copulas are functions that join multivariate distribution functions to their one-dimensional margins. The study of copulas and their role in statistics is a new but vigorously growing field. In this book the student or practitioner of statistics and probability will find discussions of the fundamental properties of copulas and some of their primary applications. The applications include the study of dependence and measures of association, and the construction of families of bivariate distributions. With nearly a hundred examples and over 150 exercises, this book is suitable as a text or for self-study. The only prerequisite is an upper level undergraduate course in probability and mathematical statistics, although some familiarity with nonparametric statistics would be useful. Knowledge of measure-theoretic probability is not required. Roger B. Nelsen is Professor of Mathematics at Lewis & Clark College in Portland, Oregon. He is also the author of "Proofs Without Words: Exercises in Visual Thinking," published by the Mathematical Association of America.

Estimation in Conditionally Heteroscedastic Time Series Models
  • Language: en
  • Pages: 239

Estimation in Conditionally Heteroscedastic Time Series Models

In his seminal 1982 paper, Robert F. Engle described a time series model with a time-varying volatility. Engle showed that this model, which he called ARCH (autoregressive conditionally heteroscedastic), is well-suited for the description of economic and financial price. Nowadays ARCH has been replaced by more general and more sophisticated models, such as GARCH (generalized autoregressive heteroscedastic). This monograph concentrates on mathematical statistical problems associated with fitting conditionally heteroscedastic time series models to data. This includes the classical statistical issues of consistency and limiting distribution of estimators. Particular attention is addressed to (quasi) maximum likelihood estimation and misspecified models, along to phenomena due to heavy-tailed innovations. The used methods are based on techniques applied to the analysis of stochastic recurrence equations. Proofs and arguments are given wherever possible in full mathematical rigour. Moreover, the theory is illustrated by examples and simulation studies.

Ranked Set Sampling
  • Language: en
  • Pages: 235

Ranked Set Sampling

The first book on the concept and applications of ranked set sampling. It provides a comprehensive review of the literature, and it includes many new results and novel applications. The detailed description of various methods illustrated by real or simulated data makes it useful for scientists and practitioners in application areas such as agriculture, forestry, sociology, ecological and environmental science, and medical studies. It can serve as a reference book and as a textbook for a short course at the graduate level.

Geometry Driven Statistics
  • Language: en
  • Pages: 436

Geometry Driven Statistics

A timely collection of advanced, original material in the area of statistical methodology motivated by geometric problems, dedicated to the influential work of Kanti V. Mardia This volume celebrates Kanti V. Mardia's long and influential career in statistics. A common theme unifying much of Mardia’s work is the importance of geometry in statistics, and to highlight the areas emphasized in his research this book brings together 16 contributions from high-profile researchers in the field. Geometry Driven Statistics covers a wide range of application areas including directional data, shape analysis, spatial data, climate science, fingerprints, image analysis, computer vision and bioinformatics. The book will appeal to statisticians and others with an interest in data motivated by geometric considerations. Summarizing the state of the art, examining some new developments and presenting a vision for the future, Geometry Driven Statistics will enable the reader to broaden knowledge of important research areas in statistics and gain a new appreciation of the work and influence of Kanti V. Mardia.

Benchmarking, Temporal Distribution, and Reconciliation Methods for Time Series
  • Language: en
  • Pages: 418

Benchmarking, Temporal Distribution, and Reconciliation Methods for Time Series

Time series play a crucial role in modern economies at all levels of activity and are used by decision makers to plan for a better future. Before publication time series are subject to statistical adjustments and this is the first statistical book to systematically deal with the methods most often applied for such adjustments. Regression-based models are emphasized because of their clarity, ease of application, and superior results. Each topic is illustrated with real case examples. In order to facilitate understanding of their properties and limitations of the methods discussed a real data example is followed throughout the book.

Probability Matching Priors: Higher Order Asymptotics
  • Language: en
  • Pages: 138

Probability Matching Priors: Higher Order Asymptotics

This is the first book on the topic of probability matching priors. It targets researchers, Bayesian and frequentist; graduate students in Statistics.