You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The Frontiers in Materials Editorial Office team are delighted to present the “Horizons in Materials” article collection, showcasing high-impact, authoritative, and accessible Review articles covering important topics at the forefront of the materials science and engineering field. All contributing authors were nominated by the Chief Editors and Editorial Office in recognition of their prominence and influence in their respective fields. The cutting-edge work presented in this article collection highlights the diversity of research performed across the entire breadth of the materials science and engineering field and reflects on the latest advances in theory, experiment, and methodology ...
This volume is part of the Ceramic Engineering and Science Proceeding (CESP) series. This series contains a collection of papers dealing with issues in both traditional ceramics (i.e., glass, whitewares, refractories, and porcelain enamel) and advanced ceramics. Topics covered in the area of advanced ceramic include bioceramics, nanomaterials, composites, solid oxide fuel cells, mechanical properties and structural design, advanced ceramic coatings, ceramic armor, porous ceramics, and more.
Material processing techniques that employ severe plastic deformation have evolved over the past decade, producing metals, alloys and composites having extraordinary properties. Variants of SPD methods are now capable of creating monolithic materials with submicron and nanocrystalline grain sizes. The resulting novel properties of these materials has led to a growing scientific and commercial interest in them. They offer the promise of bulk nanocrystalline materials for structural; applications, including nanocomposites of lightweight alloys with unprecedented strength. These materials may also enable the use of alternative metal shaping processes, such as high strain rate superplastic forming. Prospective applications for medical, automotive, aerospace and other industries are already under development.
This second edition updates and expands on the class-tested first edition text, augmenting discussion of dynamic strain aging and austenitic stainless steels and adding a section on analysis of nickel-base superalloys that shows how the mechanical threshold stress (MTS) model, an internal state variable constitutive formulation, can be used to de-convolute synergistic effects. The new edition retains a clear and rigorous presentation of the theory, mechanistic basis, and application of the MTS model. Students are introduced to critical competencies such as crystal structure, dislocations, thermodynamics of slip, dislocation–obstacle interactions, deformation kinetics, and hardening through dislocation accumulation. The model described in this volume facilitates readers’ understanding of integrated computational materials engineering (ICME), presenting context for the transition between length scales characterizing the mesoscale (mechanistic) and the macroscopic. Presenting readers a model buttressed by detailed examples and applications, the textbook is ideal for students, practitioners, and materials researchers.
Offers data, examples, and applications supporting the use of the mechanical threshold stress (MTS) model Written by Paul S. Follansbee, an international authority in the field, this book explores the underlying theory, mechanistic basis, and implementation of the mechanical threshold stress (MTS) model. Readers are introduced to such key topics as mechanical testing, crystal structure, thermodynamics, dislocation motion, dislocation–obstacle interactions, hardening through dislocation accumulation, and deformation kinetics. The models described in this book support the emerging theme of Integrated Computational Materials Engineering (ICME) by offering a foundation for the bridge between l...
Programme and the Book of Abstracts Twenty‐first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, September 2-6, 2019
Fatigue of Materials covers a broad spectrum of topics that represent the truly diverse nature of the subject that has grown to become a key area of scientific and applied research. Constituting an international forum for the materials industry, the book provides the perspectives of operators, engineers, and researchers regarding all aspects of current and emerging technologies for materials.
Traditionally fatigue, fracture, damage mechanics are predictions are based on empirical curve fitting models based on experimental data. However, when entropy is used as the metric for degradation of the material, the modeling process becomes physics based rather than empirical modeling. Because, entropy generation in a material can be calculated from the fundamental equation of thematerial. This collection of manuscripts is about using entropy for "Fatigue, Fracture, Failure Prediction and Structural Health Monitoring". The theoretical paper in the collection provides the mathematical and physics framework behind the unified mechanics theory, which unifies universal laws of motion of Newto...
This book is a collection of papers by individuals in industry and academia on research and application development of conductive polymers and plastics. Conductive plastics are positioned to play an increasingly important role in affairs of mankind, specifically in the area of electrical and electronic conductivity. While general knowledge about conductive polymers and plastics has been available for many years, a true understanding of their application has only taken place in the last 3 to 4 years. This is attributed to advances in materials and processing techniques. Engineers have only begun to explore the design freedom and economic benefits of specifying conductive polymers and plastics in industrial and business applications.This book is a key reference and guide to the use of conductive polymers and plastics. It is a summary of existing technologies, but also a look at future possibilities.
Everyone called her stupid, laughed at her because she was ugly, and bullied her for being stupid! She was the grand young mistress of the Duke's Mansion, but she dared to shit on her head even when she was a servant! In the 21st century, the policewoman came over, and the scenery was beautiful and beautiful. The slut evil girl stood by the side, and the heartless prince didn't come again! Mad Phoenix defied the will of the heavens. Cultivating the cannon emplacement, gathering talent, and building weapons! Whoever bullies her will die a horrible death, whoever insults her will die a horrible death!