Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Elliptic Curves, Modular Forms, and Their L-functions
  • Language: en
  • Pages: 217

Elliptic Curves, Modular Forms, and Their L-functions

Many problems in number theory have simple statements, but their solutions require a deep understanding of algebra, algebraic geometry, complex analysis, group representations, or a combination of all four. The original simply stated problem can be obscured in the depth of the theory developed to understand it. This book is an introduction to some of these problems, and an overview of the theories used nowadays to attack them, presented so that the number theory is always at the forefront of the discussion. Lozano-Robledo gives an introductory survey of elliptic curves, modular forms, and $L$-functions. His main goal is to provide the reader with the big picture of the surprising connections...

Number Theory and Geometry: An Introduction to Arithmetic Geometry
  • Language: en
  • Pages: 506

Number Theory and Geometry: An Introduction to Arithmetic Geometry

Geometry and the theory of numbers are as old as some of the oldest historical records of humanity. Ever since antiquity, mathematicians have discovered many beautiful interactions between the two subjects and recorded them in such classical texts as Euclid's Elements and Diophantus's Arithmetica. Nowadays, the field of mathematics that studies the interactions between number theory and algebraic geometry is known as arithmetic geometry. This book is an introduction to number theory and arithmetic geometry, and the goal of the text is to use geometry as the motivation to prove the main theorems in the book. For example, the fundamental theorem of arithmetic is a consequence of the tools we d...

Mordell–Weil Lattices
  • Language: en
  • Pages: 436

Mordell–Weil Lattices

This book lays out the theory of Mordell–Weil lattices, a very powerful and influential tool at the crossroads of algebraic geometry and number theory, which offers many fruitful connections to other areas of mathematics. The book presents all the ingredients entering into the theory of Mordell–Weil lattices in detail, notably, relevant portions of lattice theory, elliptic curves, and algebraic surfaces. After defining Mordell–Weil lattices, the authors provide several applications in depth. They start with the classification of rational elliptic surfaces. Then a useful connection with Galois representations is discussed. By developing the notion of excellent families, the authors are ...

The Arithmetic of Elliptic Curves
  • Language: en
  • Pages: 414

The Arithmetic of Elliptic Curves

The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.

Modular Functions and Dirichlet Series in Number Theory
  • Language: en
  • Pages: 218

Modular Functions and Dirichlet Series in Number Theory

A new edition of a classical treatment of elliptic and modular functions with some of their number-theoretic applications, this text offers an updated bibliography and an alternative treatment of the transformation formula for the Dedekind eta function. It covers many topics, such as Hecke’s theory of entire forms with multiplicative Fourier coefficients, and the last chapter recounts Bohr’s theory of equivalence of general Dirichlet series.

Introduction to Analytic Number Theory
  • Language: en
  • Pages: 352

Introduction to Analytic Number Theory

"This book is the first volume of a two-volume textbook for undergraduates and is indeed the crystallization of a course offered by the author at the California Institute of Technology to undergraduates without any previous knowledge of number theory. For this reason, the book starts with the most elementary properties of the natural integers. Nevertheless, the text succeeds in presenting an enormous amount of material in little more than 300 pages."-—MATHEMATICAL REVIEWS

Problems in Algebraic Number Theory
  • Language: en
  • Pages: 354

Problems in Algebraic Number Theory

The problems are systematically arranged to reveal the evolution of concepts and ideas of the subject Includes various levels of problems - some are easy and straightforward, while others are more challenging All problems are elegantly solved

Rational Points on Elliptic Curves
  • Language: en
  • Pages: 292

Rational Points on Elliptic Curves

The theory of elliptic curves involves a blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, providing an opportunity for readers to appreciate the unity of modern mathematics. The book’s accessibility, the informal writing style, and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry.

Making Transcendence Transparent
  • Language: en
  • Pages: 266

Making Transcendence Transparent

This is the first book that makes the difficult and important subject of transcendental number theory accessible to undergraduate mathematics students. Edward Burger is one of the authors of The Heart of Mathematics, winner of a 2001 Robert W. Hamilton Book Award. He will also be awarded the 2004 Chauvenet Prize, one of the most prestigious MAA prizes for outstanding exposition.

Topics in Galois Theory
  • Language: en
  • Pages: 136

Topics in Galois Theory

  • Type: Book
  • -
  • Published: 2016-04-19
  • -
  • Publisher: CRC Press

This book is based on a course given by the author at Harvard University in the fall semester of 1988. The course focused on the inverse problem of Galois Theory: the construction of field extensions having a given finite group as Galois group. In the first part of the book, classical methods and results, such as the Scholz and Reichardt constructi