Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Noncommutative Geometry and Number Theory
  • Language: en
  • Pages: 374

Noncommutative Geometry and Number Theory

In recent years, number theory and arithmetic geometry have been enriched by new techniques from noncommutative geometry, operator algebras, dynamical systems, and K-Theory. This volume collects and presents up-to-date research topics in arithmetic and noncommutative geometry and ideas from physics that point to possible new connections between the fields of number theory, algebraic geometry and noncommutative geometry. The articles collected in this volume present new noncommutative geometry perspectives on classical topics of number theory and arithmetic such as modular forms, class field theory, the theory of reductive p-adic groups, Shimura varieties, the local L-factors of arithmetic varieties. They also show how arithmetic appears naturally in noncommutative geometry and in physics, in the residues of Feynman graphs, in the properties of noncommutative tori, and in the quantum Hall effect.

Dynamics: Topology and Numbers
  • Language: en
  • Pages: 360

Dynamics: Topology and Numbers

This volume contains the proceedings of the conference Dynamics: Topology and Numbers, held from July 2–6, 2018, at the Max Planck Institute for Mathematics, Bonn, Germany. The papers cover diverse fields of mathematics with a unifying theme of relation to dynamical systems. These include arithmetic geometry, flat geometry, complex dynamics, graph theory, relations to number theory, and topological dynamics. The volume is dedicated to the memory of Sergiy Kolyada and also contains some personal accounts of his life and mathematics.

Geometry and Dynamics of Groups and Spaces
  • Language: en
  • Pages: 759

Geometry and Dynamics of Groups and Spaces

Alexander Reznikov (1960-2003) was a brilliant and highly original mathematician. This book presents 18 articles by prominent mathematicians and is dedicated to his memory. In addition it contains an influential, so far unpublished manuscript by Reznikov of book length. The book further provides an extensive survey on Kleinian groups in higher dimensions and some articles centering on Reznikov as a person.

Some Generalized Kac-Moody Algebras with Known Root Multiplicities
  • Language: en
  • Pages: 137

Some Generalized Kac-Moody Algebras with Known Root Multiplicities

Starting from Borcherds' fake monster Lie algebra, this text construct a sequence of six generalized Kac-Moody algebras whose denominator formulas, root systems and all root multiplicities can be described explicitly. The root systems decompose space into convex holes, of finite and affine type, similar to the situation in the case of the Leech lattice. As a corollary, we obtain strong upper bounds for the root multiplicities of a number of hyperbolic Lie algebras, including $AE_3$.

Sub-Laplacians with Drift on Lie Groups of Polynomial Volume Growth
  • Language: en
  • Pages: 119

Sub-Laplacians with Drift on Lie Groups of Polynomial Volume Growth

This work is intended for graduate students and research mathematicians interested in topological groups, Lie groups, and harmonic analysis.

Dualities on Generalized Koszul Algebras
  • Language: en
  • Pages: 90

Dualities on Generalized Koszul Algebras

Koszul rings are graded rings which have played an important role in algebraic topology, noncommutative algebraic geometry and in the theory of quantum groups. One aspect of the theory is to compare the module theory for a Koszul ring and its Koszul dual. There are dualities between subcategories of graded modules; the Koszul modules.

Joint Hyponormality of Toeplitz Pairs
  • Language: en
  • Pages: 82

Joint Hyponormality of Toeplitz Pairs

This work explores joint hyponormality of Toeplitz pairs. Topics include: hyponormality of Toeplitz pairs with one co-ordinate a Toeplitz operator with analytic polynomial symbol; hyponormality of trigonometric Toeplitz pairs; and the gap between $2$-hyponormality and subnormality.

The Lifted Root Number Conjecture and Iwasawa Theory
  • Language: en
  • Pages: 105

The Lifted Root Number Conjecture and Iwasawa Theory

This paper concerns the relation between the Lifted Root Number Conjecture, as introduced in [GRW2], and a new equivariant form of Iwasawa theory. A main conjecture of equivariant Iwasawa theory is formulated, and its equivalence to the Lifted Root Number Conjecture is shown subject to the validity of a semi-local version of the Root Number Conjecture, which itself is proved in the case of a tame extension of real abelian fields.

Lie Algebras Graded by the Root Systems BC$_r$, $r\geq 2$
  • Language: en
  • Pages: 175

Lie Algebras Graded by the Root Systems BC$_r$, $r\geq 2$

Introduction The $\mathfrak{g}$-module decomposition of a $\mathrm{BC}_r$-graded Lie algebra, $r\ge 3$ (excluding type $\mathrm{D}_3)$ Models for $\mathrm{BC}_r$-graded Lie algebras, $r\ge 3$ (excluding type $\mathrm{D}_3)$ The $\mathfrak{g}$-module decomposition of a $\mathrm{BC}_r$-graded Lie algebra with grading subalgebra of type $\mathrm{B}_2$, $\mathrm{C}_2$, $\mathrm{D}_2$, or $\mathrm{D}_3$ Central extensions, derivations and invariant forms Models of $\mathrm{BC}_r$-graded Lie algebras with grading subalgebra of type $\mathrm{B}_2$, $\mathrm{C}_2$, $\mathrm{D}_2$, or $\mathrm{D}_3$ Appendix: Peirce decompositions in structurable algebras References.

Resolving Markov Chains onto Bernoulli Shifts via Positive Polynomials
  • Language: en
  • Pages: 114

Resolving Markov Chains onto Bernoulli Shifts via Positive Polynomials

The two parts of this monograph contain two separate but related papers. The longer paper in Part A obtains necessary and sufficient conditions for several types of codings of Markov chains onto Bernoulli shifts. It proceeds by replacing the defining stochastic matrix of each Markov chain by a matrix whose entries are polynomials with positive coefficients in several variables; a Bernoulli shift is represented by a single polynomial with positive coefficients, $p$. This transforms jointly topological and measure-theoretic coding problems into combinatorial ones. In solving the combinatorial problems in Part A, the work states and makes use of facts from Part B concerning $p DEGREESn$ and its coefficients. Part B contains the shorter paper on $p DEGREESn$ and its coefficients, and is independ