Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Dynamics: Topology and Numbers
  • Language: en
  • Pages: 360

Dynamics: Topology and Numbers

This volume contains the proceedings of the conference Dynamics: Topology and Numbers, held from July 2–6, 2018, at the Max Planck Institute for Mathematics, Bonn, Germany. The papers cover diverse fields of mathematics with a unifying theme of relation to dynamical systems. These include arithmetic geometry, flat geometry, complex dynamics, graph theory, relations to number theory, and topological dynamics. The volume is dedicated to the memory of Sergiy Kolyada and also contains some personal accounts of his life and mathematics.

Noncommutative Geometry and Number Theory
  • Language: en
  • Pages: 374

Noncommutative Geometry and Number Theory

In recent years, number theory and arithmetic geometry have been enriched by new techniques from noncommutative geometry, operator algebras, dynamical systems, and K-Theory. This volume collects and presents up-to-date research topics in arithmetic and noncommutative geometry and ideas from physics that point to possible new connections between the fields of number theory, algebraic geometry and noncommutative geometry. The articles collected in this volume present new noncommutative geometry perspectives on classical topics of number theory and arithmetic such as modular forms, class field theory, the theory of reductive p-adic groups, Shimura varieties, the local L-factors of arithmetic varieties. They also show how arithmetic appears naturally in noncommutative geometry and in physics, in the residues of Feynman graphs, in the properties of noncommutative tori, and in the quantum Hall effect.

Geometry and Dynamics of Groups and Spaces
  • Language: en
  • Pages: 759

Geometry and Dynamics of Groups and Spaces

Alexander Reznikov (1960-2003) was a brilliant and highly original mathematician. This book presents 18 articles by prominent mathematicians and is dedicated to his memory. In addition it contains an influential, so far unpublished manuscript by Reznikov of book length. The book further provides an extensive survey on Kleinian groups in higher dimensions and some articles centering on Reznikov as a person.

C*-algebras and Elliptic Theory II
  • Language: en
  • Pages: 312

C*-algebras and Elliptic Theory II

This book consists of a collection of original, refereed research and expository articles on elliptic aspects of geometric analysis on manifolds, including singular, foliated and non-commutative spaces. The topics covered include the index of operators, torsion invariants, K-theory of operator algebras and L2-invariants. There are contributions from leading specialists, and the book maintains a reasonable balance between research, expository and mixed papers.

Approximation and Entropy Numbers of Volterra Operators with Application to Brownian Motion
  • Language: en
  • Pages: 103

Approximation and Entropy Numbers of Volterra Operators with Application to Brownian Motion

This text considers a specific Volterra integral operator and investigates its degree of compactness in terms of properties of certain kernel functions. In particular, under certain optimal integrability conditions the entropy numbers $e_n(T_{\rho, \psi})$ satisfy $c_1\norm{\rho\psi}_r0$.

Homogeneous Spaces, Tits Buildings, and Isoparametric Hypersurfaces
  • Language: en
  • Pages: 137

Homogeneous Spaces, Tits Buildings, and Isoparametric Hypersurfaces

This title classifys 1-connected compact homogeneous spaces which have the same rational cohomology as a product of spheres $\mahtbb{S} DEGREES{n_1}\times\mathbb{S} DEGREES{n_2}$, with $3\leq n_1\leq n_2$ and $n_2$ odd. As an application, it classifys compact generalized quadrangles (buildings of type $C_2)$ which admit a point transitive automorphism group, and isoparametric hypersurfaces which admit a transitive isometry group on one f

Surfaces with $K^2 = 7$ and $p_g = 4$
  • Language: en
  • Pages: 95

Surfaces with $K^2 = 7$ and $p_g = 4$

The aim of this monograph is the exact description of minimal smooth algebraic surfaces over the complex numbers with the invariants $K DEGREES2 = 7$ und $p_g = 4$. The interest in this fine classification of algebraic surfaces of general type goes back to F. Enriques, who dedicates a large part of his celebrated book Superficie Algebriche to this problem. The cases $p_g = 4$, $K DEGREES2 \leq 6$ were treated in the past by several authors (among others M. Noether, F. Enriques, E. Horikawa) and it is worthwhile to remark that already the case $K DEGREES2 = 6$ is rather complicated and it is up to now not possible to decide whether the moduli space of these surfaces

A Geometric Setting for Hamiltonian Perturbation Theory
  • Language: en
  • Pages: 137

A Geometric Setting for Hamiltonian Perturbation Theory

In this text, the perturbation theory of non-commutatively integrable systems is revisited from the point of view of non-Abelian symmetry groups. Using a co-ordinate system intrinsic to the geometry of the symmetry, the book generalizes and geometrizes well-known estimates of Nekhoroshev (1977), in a class of systems having almost $G$-invariant Hamiltonians. These estimates are shown to have a natural interpretation in terms of momentum maps and co-adjoint orbits. The geometric framework adopted is described explicitly in examples, including the Euler-Poinsot rigid body.

Almost Commuting Elements in Compact Lie Groups
  • Language: en
  • Pages: 153

Almost Commuting Elements in Compact Lie Groups

This text describes the components of the moduli space of conjugacy classes of commuting pairs and triples of elements in a compact Lie group. This description is in the extended Dynkin diagram of the simply connected cover, together with the co-root integers and the action of the fundamental group. In the case of three commuting elements, we compute Chern-Simons invariants associated to the corresponding flat bundles over the three-torus, and verify a conjecture of Witten which reveals a surprising symmetry involving the Chern-Simons invariants and the dimensions of the components of the moduli space.

Ruelle Operators: Functions which Are Harmonic with Respect to a Transfer Operator
  • Language: en
  • Pages: 74

Ruelle Operators: Functions which Are Harmonic with Respect to a Transfer Operator

Let $N\in\mathbb{N}$, $N\geq2$, be given. Motivated by wavelet analysis, this title considers a class of normal representations of the $C DEGREES{\ast}$-algebra $\mathfrak{A}_{N}$ on two unitary generators $U$, $V$ subject to the relation $UVU DEGREES{-1}=V DEGREES{N}$. The representations are in one-to-one correspondence with solutions $h\in L DEGREES{1}\left(\mathbb{T}\right)$, $h\geq0$, to $R\left(h\right)=h$ where $R$ is a certain transfer operator (positivity-preserving) which was studied previously by D. Ruelle. The representations of $\mathfrak{A}_{N}$ may also be viewed as representations of a certain (discrete) $N$-adic $ax+b$ group which was considered recently