Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Functions with Disconnected Spectrum
  • Language: en
  • Pages: 152

Functions with Disconnected Spectrum

The classical sampling problem is to reconstruct entire functions with given spectrum S from their values on a discrete set L. From the geometric point of view, the possibility of such reconstruction is equivalent to determining for which sets L the exponential system with frequencies in L forms a frame in the space L2(S). The book also treats the problem of interpolation of discrete functions by analytic ones with spectrum in S and the problem of completeness of discrete translates. The size and arithmetic structure of both the spectrum S and the discrete set L play a crucial role in these problems. After an elementary introduction, the authors give a new presentation of classical results d...

The Invariant Theory of Matrices
  • Language: en
  • Pages: 162

The Invariant Theory of Matrices

This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation. Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving (1) the first fundamental theorem that describes a set of generators in the ring of invariants, and (2) the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case requires the development of a collection of tools. These tools and their application to the study of invariants are exlained in an elementary, self-contained way in the book.

Introduction to Arithmetic Groups
  • Language: en
  • Pages: 133

Introduction to Arithmetic Groups

Fifty years after it made the transition from mimeographed lecture notes to a published book, Armand Borel's Introduction aux groupes arithmétiques continues to be very important for the theory of arithmetic groups. In particular, Chapter III of the book remains the standard reference for fundamental results on reduction theory, which is crucial in the study of discrete subgroups of Lie groups and the corresponding homogeneous spaces. The review of the original French version in Mathematical Reviews observes that “the style is concise and the proofs (in later sections) are often demanding of the reader.” To make the translation more approachable, numerous footnotes provide helpful comments.

Topological Persistence in Geometry and Analysis
  • Language: en
  • Pages: 143

Topological Persistence in Geometry and Analysis

The theory of persistence modules originated in topological data analysis and became an active area of research in algebraic topology. This book provides a concise and self-contained introduction to persistence modules and focuses on their interactions with pure mathematics, bringing the reader to the cutting edge of current research. In particular, the authors present applications of persistence to symplectic topology, including the geometry of symplectomorphism groups and embedding problems. Furthermore, they discuss topological function theory, which provides new insight into oscillation of functions. The book is accessible to readers with a basic background in algebraic and differential topology.

Function Theory and ℓp Spaces
  • Language: en
  • Pages: 239

Function Theory and ℓp Spaces

The classical ℓp sequence spaces have been a mainstay in Banach spaces. This book reviews some of the foundational results in this area (the basic inequalities, duality, convexity, geometry) as well as connects them to the function theory (boundary growth conditions, zero sets, extremal functions, multipliers, operator theory) of the associated spaces ℓpA of analytic functions whose Taylor coefficients belong to ℓp. Relations between the Banach space ℓp and its associated function space are uncovered using tools from Banach space geometry, including Birkhoff-James orthogonality and the resulting Pythagorean inequalities. The authors survey the literature on all of this material, including a discussion of the multipliers of ℓpA and a discussion of the Wiener algebra ℓ1A. Except for some basic measure theory, functional analysis, and complex analysis, which the reader is expected to know, the material in this book is self-contained and detailed proofs of nearly all the results are given. Each chapter concludes with some end notes that give proper references, historical background, and avenues for further exploration.

Nigel Kalton?s Lectures in Nonlinear Functional Analysis
  • Language: en
  • Pages: 270

Nigel Kalton?s Lectures in Nonlinear Functional Analysis

The main theme of the book is the nonlinear geometry of Banach spaces, and it considers various significant problems in the field. The present book is a commented transcript of the notes of the graduate-level topics course in nonlinear functional analysis given by the late Nigel Kalton in 2008. Nonlinear geometry of Banach spaces is a very active area of research with connections to theoretical computer science, noncommutative geometry, as well as geometric group theory. Nigel Kalton was the most influential and prolific contributor to the theory. Collected here are the topics that Nigel Kalton felt were significant for those first dipping a toe into the subject of nonlinear functional analysis and presents these topics in an accessible and concise manner. As well as covering some well-known topics, it also includes recent results discovered by Kalton and his collaborators which have not previously appeared in textbook form. A typical first-year course in functional analysis will provide sufficient background for readers of this book.

Generalized Ricci Flow
  • Language: en
  • Pages: 257

Generalized Ricci Flow

The generalized Ricci flow is a geometric evolution equation which has recently emerged from investigations into mathematical physics, Hitchin's generalized geometry program, and complex geometry. This book gives an introduction to this new area, discusses recent developments, and formulates open questions and conjectures for future study. The text begins with an introduction to fundamental aspects of generalized Riemannian, complex, and Kähler geometry. This leads to an extension of the classical Einstein-Hilbert action, which yields natural extensions of Einstein and Calabi-Yau structures as ‘canonical metrics’ in generalized Riemannian and complex geometry. The book then introduces g...

Introduction to Banach Spaces: Analysis and Probability
  • Language: en
  • Pages: 463

Introduction to Banach Spaces: Analysis and Probability

This first volume of a two-volume overview covers the basic theory of Banach spaces, harmonic analysis and probability.

Catalog of Copyright Entries. Third Series
  • Language: en
  • Pages: 1482
Quantum Field Theory: Batalin–Vilkovisky Formalism and Its Applications
  • Language: en
  • Pages: 200

Quantum Field Theory: Batalin–Vilkovisky Formalism and Its Applications

This book originated from lecture notes for the course given by the author at the University of Notre Dame in the fall of 2016. The aim of the book is to give an introduction to the perturbative path integral for gauge theories (in particular, topological field theories) in Batalin–Vilkovisky formalism and to some of its applications. The book is oriented toward a graduate mathematical audience and does not require any prior physics background. To elucidate the picture, the exposition is mostly focused on finite-dimensional models for gauge systems and path integrals, while giving comments on what has to be amended in the infinite-dimensional case relevant to local field theory. Motivating examples discussed in the book include Alexandrov–Kontsevich–Schwarz–Zaboronsky sigma models, the perturbative expansion for Chern–Simons invariants of 3-manifolds given in terms of integrals over configurations of points on the manifold, the BF theory on cellular decompositions of manifolds, and Kontsevich's deformation quantization formula.