You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book explores the cutting edge of the fundamental role of generalizations of Lie theory and related non-commutative and non-associative structures in mathematics and physics.
This book collects the proceedings of the Algebra, Geometry and Mathematical Physics Conference, held at the University of Haute Alsace, France, October 2011. Organized in the four areas of algebra, geometry, dynamical symmetries and conservation laws and mathematical physics and applications, the book covers deformation theory and quantization; Hom-algebras and n-ary algebraic structures; Hopf algebra, integrable systems and related math structures; jet theory and Weil bundles; Lie theory and applications; non-commutative and Lie algebra and more. The papers explore the interplay between research in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond. The book benefits a broad audience of researchers and advanced students.
Mathematics provides a language in which to formulate the laws that govern nature. It is a language proven to be both powerful and effective. In the quest for a deeper understanding of the fundamental laws of physics, one is led to theories that are increasingly difficult to put to the test. In recent years, many novel questions have emerged in mathematical physics, particularly in quantum field theory. Indeed, several areas of mathematics have lately become increasingly influentialin physics and, in turn, have become influenced by developments in physics. Over the last two decades, interactions between mathematicians and physicists have increased enormously and have resulted in a fruitful c...
It's 16 chapters of culture, history, essay and insight, and pure goodness. Besh tells us the story of his New Orleans by the season and by the dish. Archival, four-color, location photography along with ingredient information make the Big Easy easy to tackle in home kitchens. Cooks will salivate over the 200 recipes that honor and celebrate everything New Orleans. Bite by bite John Besh brings us New Orleans cooking like we've never tasted before. It's the perfect blend of contemporary French techniques with indigenous Southern Louisiana products and know-how. His amazing new offering is exclusively brought to fans and foodies everywhere by Andrews McMeel. From Mardi Gras, to the shrimp sea...
The articles in this book are based on talks given at the North Texas Logic Conference in October of 2004. The main goal of the editors was to collect articles representing diverse fields within logic that would both contain significant new results and be accessible to readers with a general background in logic. Included in the book is a problem list, jointly compiled by the speakers, that reflects some of the most important questions in various areas of logic. This book should be useful to graduate students and researchers alike across the spectrum of mathematical logic.
Presents the proceedings of the Second International Conference on Commutative Ring Theory in Fes, Morocco. The text details developments in commutative algebra, highlighting the theory of rings and ideals. It explores commutative algebra's connections with and applications to topological algebra and algebraic geometry.
The Fifth International Conference on Topological Algebras and Applications was held in Athens, Greece, from June 27th to July 1st of 2005. The main topic of the Conference was general theory of topological algebras and its various applications, with emphasis on the ``non-normed'' case. in addition to the study of the internal structure of non-normed, and even non-locally convex topological algebras, there are applications to other branches of mathematics, such as differential geometry of smooth manifolds, and mathematical physics, such as quantum relativity and quantum cosmology. Operator theory of unbounded operators and related non-normed topological algebras are intensively studied here. Other topics presented in this volume are topological homological algebra, topological algebraic geometry, sheaf theory and $K$-theory.
This book is dedicated to the memory of Michael Marinov, the theorist who together with Felix Berezin introduced the classical description of spin by anticommuting Grassmann variables. The Volume contains original papers and reviews of physicists and mathematicians written specifically for this book. These articles reflect the current status and recent developments in the areas of Marinov's research interests: quantum tunneling, quantization of constrained systems, supersymmetry and others. Included personal recollections portray a human face of Michael Marinov, a person of great knowledge and integrity.
This volume presents the proceedings from the conference on Abelian Groups, Rings, and Modules (AGRAM) held at the University of Western Australia (Perth). Included are articles based on talks given at the conference, as well as a few specially invited papers. The proceedings were dedicated to Professor László Fuchs. The book includes a tribute and a review of his work by his long-time collaborator, Professor Luigi Salce. Four surveys from leading experts follow Professor Salce's article. They present recent results from active research areas
This volume contains original research and survey articles stemming from the Euroconference ``Algebraic and Geometric Combinatorics''. The papers discuss a wide range of problems that illustrate interactions of combinatorics with other branches of mathematics, such as commutative algebra, algebraic geometry, convex and discrete geometry, enumerative geometry, and topology of complexes and partially ordered sets. Among the topics covered are combinatorics of polytopes, lattice polytopes, triangulations and subdivisions, Cohen-Macaulay cell complexes, monomial ideals, geometry of toric surfaces, groupoids in combinatorics, Kazhdan-Lusztig combinatorics, and graph colorings. This book is aimed at researchers and graduate students interested in various aspects of modern combinatorial theories.