You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Publisher description
This book is the result of a meeting that took place at the University of Ghent (Belgium) on the relations between Hilbert's tenth problem, arithmetic, and algebraic geometry. Included are written articles detailing the lectures that were given as well as contributed papers on current topics of interest. The following areas are addressed: an historical overview of Hilbert's tenth problem, Hilbert's tenth problem for various rings and fields, model theory and local-global principles, including relations between model theory and algebraic groups and analytic geometry, conjectures in arithmetic geometry and the structure of diophantine sets, for example with Mazur's conjecture, Lang's conjecture, and Bücchi's problem, and results on the complexity of diophantine geometry, highlighting the relation to the theory of computation. The volume allows the reader to learn and compare different approaches (arithmetical, geometrical, topological, model-theoretical, and computational) to the general structural analysis of the set of solutions of polynomial equations. It would make a nice contribution to graduate and advanced graduate courses on logic, algebraic geometry, and number theory
This book presents the full, self-contained negative solution of Hilbert's 10th problem.
This book constitutes the proceedings of the 18th Conference on Computability in Europe, CiE 2022, in Swansea, UK, in July 2022. The 19 full papers together with 7 invited papers presented in this volume were carefully reviewed and selected from 41 submissions. The motto of CiE 2022 was “Revolutions and revelations in computability”. This alludes to the revolutionary developments we have seen in computability theory, starting with Turing's and Gödel's discoveries of the uncomputable and the unprovable and continuing to the present day with the advent of new computational paradigms such as quantum computing and bio-computing, which have dramatically changed our view of computability and revealed new insights into the multifarious nature of computation.
This book presents a set of historical recollections on the work of Martin Davis and his role in advancing our understanding of the connections between logic, computing, and unsolvability. The individual contributions touch on most of the core aspects of Davis’ work and set it in a contemporary context. They analyse, discuss and develop many of the ideas and concepts that Davis put forward, including such issues as contemporary satisfiability solvers, essential unification, quantum computing and generalisations of Hilbert’s tenth problem. The book starts out with a scientific autobiography by Davis, and ends with his responses to comments included in the contributions. In addition, it includes two previously unpublished original historical papers in which Davis and Putnam investigate the decidable and the undecidable side of Logic, as well as a full bibliography of Davis’ work. As a whole, this book shows how Davis’ scientific work lies at the intersection of computability, theoretical computer science, foundations of mathematics, and philosophy, and draws its unifying vision from his deep involvement in Logic.
This book constitutes the refereed proceedings of the 12th Annual Conference on Theory and Applications of Models of Computation, TAMC 2014, held in Singapore, in May 2015. The 35 revised full papers presented were carefully reviewed and selected from 78 submissions. The papers treat all topics relating to the theory and applications of models computation, for example recursion theory and mathematical logic; computational complexity and Boolean functions; graphy theory; quantum computing; parallelism and statistics; learning, automata and probabilistic models; parameterised complexity.
Presents main results and techniques in computable structure theory together in a coherent framework for the first time in 20 years.
Hilbert's tenth problem is one of 23 problems proposed by David Hilbert in 1900 at the International Congress of Mathematicians in Paris. These problems gave focus for the exponential development of mathematical thought over the following century. The tenth problem asked for a general algorithm to determine if a given Diophantine equation has a solution in integers. It was finally resolved in a series of papers written by Julia Robinson, Martin Davis, Hilary Putnam, and finally Yuri Matiyasevich in 1970. They showed that no such algorithm exists. This book is an exposition of this remarkable achievement. Often, the solution to a famous problem involves formidable background. Surprisingly, th...
In this groundbreaking volume, leading philosophers and mathematicians explore Kurt Gödel's work on the foundations and philosophy of mathematics.
This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The do...