You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Neutrosophic Set in Medical Image Analysis gives an understanding of the concepts of NS, along with knowledge on how to gather, interpret, analyze and handle medical images using NS methods. It presents the latest cutting-edge research that gives insight into neutrosophic set's novel techniques, strategies and challenges, showing how it can be used in biomedical diagnoses systems. The neutrosophic set (NS), which is a generalization of fuzzy set, offers the prospect of overcoming the restrictions of fuzzy-based approaches to medical image analysis. - Introduces the mathematical model and concepts of neutrosophic theory and methods - Highlights the different techniques of neutrosophic theory, focusing on applying the neutrosophic set in image analysis to support computer- aided diagnosis (CAD) systems, including approaches from soft computing and machine learning - Shows how NS techniques can be applied to medical image denoising, segmentation and classification - Provides challenges and future directions in neutrosophic set based medical image analysis
Soft Computing Based Medical Image Analysis presents the foremost techniques of soft computing in medical image analysis and processing. It includes image enhancement, segmentation, classification-based soft computing, and their application in diagnostic imaging, as well as an extensive background for the development of intelligent systems based on soft computing used in medical image analysis and processing. The book introduces the theory and concepts of digital image analysis and processing based on soft computing with real-world medical imaging applications. Comparative studies for soft computing based medical imaging techniques and traditional approaches in medicine are addressed, providing flexible and sophisticated application-oriented solutions. - Covers numerous soft computing approaches, including fuzzy logic, neural networks, evolutionary computing, rough sets and Swarm intelligence - Presents transverse research in soft computing formation from various engineering and industrial sectors in the medical domain - Highlights challenges and the future scope for soft computing based medical analysis and processing techniques
Advanced techniques in image processing have led to many innovations supporting the medical field, especially in the area of disease diagnosis. Biomedical imaging is an essential part of early disease detection and often considered a first step in the proper management of medical pathological conditions. Classification and Clustering in Biomedical Signal Processing focuses on existing and proposed methods for medical imaging, signal processing, and analysis for the purposes of diagnosing and monitoring patient conditions. Featuring the most recent empirical research findings in the areas of signal processing for biomedical applications with an emphasis on classification and clustering techniques, this essential publication is designed for use by medical professionals, IT developers, and advanced-level graduate students.
Social Network Analytics: Computational Research Methods and Techniques focuses on various technical concepts and aspects of social network analysis. The book features the latest developments and findings in this emerging area of research. In addition, it includes a variety of applications from several domains, such as scientific research, and the business and industrial sectors. The technical aspects of analysis are covered in detail, including visualizing and modeling, network theory, mathematical models, the big data analytics of social networks, multidimensional scaling, and more. As analyzing social network data is rapidly gaining interest in the scientific research community because of...
In this book, application-related studies for acoustic biomedical sensors are covered in depth. The book features an array of different biomedical signals, including acoustic biomedical signals as well as the thermal biomedical signals, magnetic biomedical signals, and optical biomedical signals to support healthcare. It employs signal processing approaches, such as filtering, Fourier transform, spectral estimation, and wavelet transform. The book presents applications of acoustic biomedical sensors and bio-signal processing for prediction, detection, and monitoring of some diseases from the phonocardiogram (PCG) signal analysis. Several challenges and future perspectives related to the acoustic sensors applications are highlighted. This book supports the engineers, researchers, designers, and physicians in several interdisciplinary domains that support healthcare.
Healthcare Data Analytics and Management help readers disseminate cutting-edge research that delivers insights into the analytic tools, opportunities, novel strategies, techniques and challenges for handling big data, data analytics and management in healthcare. As the rapidly expanding and heterogeneous nature of healthcare data poses challenges for big data analytics, this book targets researchers and bioengineers from areas of machine learning, data mining, data management, and healthcare providers, along with clinical researchers and physicians who are interested in the management and analysis of healthcare data. - Covers data analysis, management and security concepts and tools in the healthcare domain - Highlights electronic medical health records and patient information records - Discusses the different techniques to integrate Big data and Internet-of-Things in healthcare, including machine learning and data mining - Includes multidisciplinary contributions in relation to healthcare applications and challenges
This is the third volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books.
This comprehensive book focuses on better big-data security for healthcare organizations. Following an extensive introduction to the Internet of Things (IoT) in healthcare including challenging topics and scenarios, it offers an in-depth analysis of medical body area networks with the 5th generation of IoT communication technology along with its nanotechnology. It also describes a novel strategic framework and computationally intelligent model to measure possible security vulnerabilities in the context of e-health. Moreover, the book addresses healthcare systems that handle large volumes of data driven by patients’ records and health/personal information, including big-data-based knowledge...
Intelligent transport systems are on the increase. They employ a variety of technologies, from basic management systems to more advanced application systems, with information technology – including wireless communication, computational technologies, floating car data/cellular data such as sensing technologies and video vehicle detection – playing a major role. This book presents the proceedings of the 2nd International Conference on Information Technology and Intelligent Transportation Systems (ITITS 2017), held in Xi’an, People's Republic of China, in June 2017. The conference provides a platform for professionals and researchers from industry and academia to present and discuss recen...
Video is one of the most important forms of multimedia available, as it is utilized for security purposes, to transmit information, promote safety, and provide entertainment. As motion is the most integral element in videos, it is important that motion detection systems and algorithms meet specific requirements to achieve accurate detection of real time events. Feature Detectors and Motion Detection in Video Processing explores innovative methods and approaches to analyzing and retrieving video images. Featuring empirical research and significant frameworks regarding feature detectors and descriptor algorithms, the book is a critical reference source for professionals, researchers, advanced-level students, technology developers, and academicians.