You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.
Key Building Blocks via Enzyme-Mediated Synthesis, by Thomas Fischer and Jörg Pietruszka * Engineered Biosynthesis of Plant Polyketides: Structure-Based and Precursor-Directed Approach, by Ikuro Abe * Enzymatic and Chemo-Enzymatic Approaches Towards Natural and Non-Natural Alkaloids: Indoles, Isoquinolines, and Others, by Joachim Stöckigt, Zhong Chen, and Martin Ruppert * Chemoenzymatic and Bioenzymatic Synthesis of Carbohydrate Containing Natural Products, by Bohdan Ostash, Xiaohui Yan, Victor Fedorenko, and Andreas Bechthold * Total (Bio)Synthesis: Strategies of Nature and of Chemists, by Alexandra A. Roberts, Katherine S. Ryan, Bradley S. Moore, and Tobias A.M. Gulder
The understanding of (patho)physiological processes - the biosynthesis of biomolecules such as enzymes, nucleic acids, and secondary metabolites; the pathways of signaltransduction; or the function of pharmaceutical agents - is of increasing importance not only for drug research but also for the development of new synthetic methods in organic chemistry and biochemistry. In a truly interdisciplinary way bioorganic chemistry unites the central questions of biochemistry, medicinal chemistry, organic chemistry, and spectroscopy. This book fills a void in this rapidly growing field of chemistry and gives a thorough yet understandable introduction for advanced students and researchers alike. Contributions of more than sixty scientists provide a topical overview of recent advances in: drug development based on natural products; the biosynthesis, activity, and application of enzymes; carbohydrates; peptides; nucleic acids; analytical methods in bioorganic chemistry. This book will be an appetizer for all - students and researchers alike - seeking orientation in this fascinating field of chemistry.
This second edition of a very successful book is thoroughly updated with existing chapters completely rewritten while the content has more than doubled from 16 to 36 chapters. As with the first edition, the focus is on industrial pharmaceutical research, written by a team of industry experts from around the world, while quality and safety management, drug approval and regulation, patenting issues, and biotechnology fundamentals are also covered. In addition, this new edition now not only includes biotech drug development but also the use of biopharmaceuticals in diagnostics and vaccinations. With a foreword by Robert Langer, Kenneth J Germeshausen Professor of Chemical and Biomedical Engineering at MIT and member of the National Academy of Engineering and the National Academy of Sciences.
Carbohydrates have long been disregarded by the scientific community due to their complex structure and a lack of suitable experimental methods for structure determination. This book provides an overview of the structure, function, and application of carbohydrate-modifying biocatalysts. It explores glycoconjugates and carbohydrate-modifying enzymes
This book provides an actual overview of the structure, function, and application of carbohydrate-modifying biocatalysts. Carbohydrates have been disregarded for a long time by the scientific community, mainly due to their complex structure. Meanwhile, the situation changed with increasing knowledge about the key role carbohydrates play in biological processes such as recognition, signal transduction, immune responses, and others. An outcome of research activities in glycoscience is the development of several new pharmaceuticals against serious diseases such as malaria, cancer, and various storage diseases. Furthermore, the employment of carbohydrate-modifying biocatalysts—enzymes as well ...
A rich array of methods and discussions of productive microbial processes. • Reviews of the newest techniques, approaches, and options in the use of microorganisms and other cell culture systems for the manufacture of pharmaceuticals, industrial enzymes and proteins, foods and beverages, fuels and fine chemicals, and other products. • Focuses on the latest advances and findings on the current state of the art and science and features a new section on the microbial production of biofuels and fine chemicals, as well as a stronger emphasis on mammalian cell culture methods. • Covers new methods that enhance the capacity of microbes used for a wide range of purposes, from winemaking to pharmaceuticals to bioremediation, at volumes from micro- to industrial scale.
Genome- and proteome-based research is generating a significant increase in the number of available drug targets. Correspondingly there is an increasing need for novel, diverse compounds, particularly based on natural compounds, as screening resource. The purpose of the Ernst Schering Research Foundation Workshop 51 was to provide a forum for an open exchange on perspectives and limitations of biocombinatorial synthesis and the significance of this technology for future drug discovery in light of this challenge. Experts from academia and industry provided contributions covering: the significance of natural compounds for state-of-the-art drug discovery; the underlying basic principle for the biosynthesis of highly complex compounds; and the scope and limitations of combinatorial biosynthesis regarding formation, identification, optimisation, isolation and manufacturing of novel biologically active entities.
Microbial natural products have been an important traditional source of valuable antibiotics and other drugs but interest in them waned in the 1990s when big pharma decided that their discovery was no longer cost-effective and concentrated instead on synthetic chemistry as a source of novel compounds, often with disappointing results. Moreover understanding the biosynthesis of complex natural products was frustratingly difficult. With the development of molecular genetic methods to isolate and manipulate the complex microbial enzymes that make natural products, unexpected chemistry has been revealed and interest in the compounds has again flowered. This two-volume treatment of the subject wi...
Lignans, by convention, are a group of natural products that are formed by linking two phenylpropanoid units (C C units) by oxidative coupling. Most importantly, in 6 3 a lignan, two (C C units) are bound through the central carbon of their side chains, 6 3 0 i. e. the 8 and 8 positions (1, 2). The occurrence of C C -dimers, linked at sites other 6 3 0 than the 8–8 positions, is also known and these compounds have been termed neolignans (3, 4). As these two groups of compounds have close structural as well as biosynthetic relationships, they are often associated together and incorporated under the general term “lignan” (5). The diverse structural categorization of true lignans and of a...