You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The principal aim of this book is to introduce to the widest possible audience an original view of belief calculus and uncertainty theory. In this geometric approach to uncertainty, uncertainty measures can be seen as points of a suitably complex geometric space, and manipulated in that space, for example, combined or conditioned. In the chapters in Part I, Theories of Uncertainty, the author offers an extensive recapitulation of the state of the art in the mathematics of uncertainty. This part of the book contains the most comprehensive summary to date of the whole of belief theory, with Chap. 4 outlining for the first time, and in a logical order, all the steps of the reasoning chain assoc...
Scientists and engineers conducting research for military applicationsshare their findings on the semiautomation of the functionalities ofcognition, comprehension, and projection so that machines can replaceor enhance human awareness of a situation. A first volume surveysvarious options for practitioners, and this second volume identifiesoptions that have been chosen by the Technical Cooperation Programrepresentatives from different countries. It covers information fusionconcepts, distributed information fusion and management, human-systeminteraction, scenario-based design, and measures of effectiveness. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com).
The theory of belief functions, also known as evidence theory or Dempster-Shafer theory, was first introduced by Arthur P. Dempster in the context of statistical inference, and was later developed by Glenn Shafer as a general framework for modeling epistemic uncertainty. These early contributions have been the starting points of many important developments, including the Transferable Belief Model and the Theory of Hints. The theory of belief functions is now well established as a general framework for reasoning with uncertainty, and has well understood connections to other frameworks such as probability, possibility and imprecise probability theories. This volume contains the proceedings of the 2nd International Conference on Belief Functions that was held in Compiègne, France on 9-11 May 2012. It gathers 51 contributions describing recent developments both on theoretical issues (including approximation methods, combination rules, continuous belief functions, graphical models and independence concepts) and applications in various areas including classification, image processing, statistics and intelligent vehicles.
The book emphasizes a contemporary view on the role of higher level fusion in designing crisis management systems, and provide the formal foundations, architecture and implementation strategies required for building dynamic current and future situational pictures, challenges of, and the state of the art computational approaches to designing such processes. This book integrates recent advances in decision theory with those in fusion methodology to define an end-to-end framework for decision support in crisis management. The text discusses modern fusion and decision support methods for dealing with heterogeneous and often unreliable, low fidelity, contradictory, and redundant data and information, as well as rare, unknown, unconventional or even unimaginable critical situations. Also the book examines the role of context in situation management, cognitive aspects of decision making and situation management, approaches to domain representation, visualization, as well as the role and exploitation of the social media. The editors include examples and case studies from the field of disaster management.
This book constitutes the refereed proceedings of the 11th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU 2011, held in Belfast, UK, in June/July 2011. The 60 revised full papers presented together with 3 invited talks were carefully reviewed and selected from 108 submissions. The papers are organized in topical sections on argumentation; Bayesian networks and causal networks; belief functions; belief revision and inconsistency handling; classification and clustering; default reasoning and logics for reasoning under uncertainty; foundations of reasoning and decision making under uncertainty; fuzzy sets and fuzzy logic; implementation and applications of uncertain systems; possibility theory and possibilistic logic; and uncertainty in databases.
This text reviews the fundamental theory and latest methods for including contextual information in fusion process design and implementation. Chapters are contributed by the foremost international experts, spanning numerous developments and applications. The book highlights high- and low-level information fusion problems, performance evaluation under highly demanding conditions, and design principles. A particular focus is placed on approaches that integrate research from different communities, emphasizing the benefit of combining different techniques to overcome the limitations of a single perspective. Features: introduces the terminology and core elements in information fusion and context; presents key themes for context-enhanced information fusion; discusses design issues in developing context-aware fusion systems; provides mathematical grounds for modeling the contextual influences in representative fusion problems; describes the fusion of hard and soft data; reviews a diverse range of applications.
This book constitutes the thoroughly refereed proceedings of the Third International Conference on Belief Functions, BELIEF 2014, held in Oxford, UK, in September 2014. The 47 revised full papers presented in this book were carefully selected and reviewed from 56 submissions. The papers are organized in topical sections on belief combination; machine learning; applications; theory; networks; information fusion; data association; and geometry.
Information fusion resulting from multi-source processing, often called multisensor data fusion when sensors are the main sources of information, is a relatively young (less than 20 years) technology domain. It provides techniques and methods for: Integrating data from multiple sources and using the complementarity of this data to derive maximum information about the phenomenon being observed; Analyzing and deriving the meaning of these observations; Selecting the best course of action; and Controlling the actions. Various sensors have been designed to detect some specific phenomena, but not others. Data fusion applications can combine synergically information from many sensors, including da...
This book constitutes the refereed post-conference proceedings of the First International Workshop on Mobility Analytics for Spatio-Temporal and Social Data, MATES 2017, held in Munich, Germany, in September 2017. The 6 revised full papers and 2 short papers included in this volume were carefully reviewed and selected from 13 submissions. Also included are two keynote speeches. The papers intend to raise awareness of real-world problems in critical domains which require novel data management solutions. They are organized in two thematic sections: social network analytics and applications, and spatio-temporal mobility analytics.