Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Introduction to the Arithmetic Theory of Automorphic Functions
  • Language: en
  • Pages: 288

Introduction to the Arithmetic Theory of Automorphic Functions

The theory of automorphic forms is playing increasingly important roles in several branches of mathematics, even in physics, and is almost ubiquitous in number theory. This book introduces the reader to the subject and in particular to elliptic modular forms with emphasis on their number-theoretical aspects. After two chapters geared toward elementary levels, there follows a detailed treatment of the theory of Hecke operators, which associate zeta functions to modular forms. At a more advanced level, complex multiplication of elliptic curves and abelian varieties is discussed. The main question is the construction of abelian extensions of certain algebraic number fields, which is traditionally called "Hilbert's twelfth problem." Another advanced topic is the determination of the zeta function of an algebraic curve uniformized by modular functions, which supplies an indispensable background for the recent proof of Fermat's last theorem by Wiles.

Discrete Groups and Automorphic Functions
  • Language: en
  • Pages: 202

Discrete Groups and Automorphic Functions

  • Type: Book
  • -
  • Published: 1977
  • -
  • Publisher: Unknown

None

Automorphic Functions and Number Theory
  • Language: en
  • Pages: 75

Automorphic Functions and Number Theory

  • Type: Book
  • -
  • Published: 2006-11-15
  • -
  • Publisher: Springer

None

Automorphic Functions
  • Language: en
  • Pages: 360

Automorphic Functions

When published in 1929, Ford's book was the first treatise in English on automorphic functions. By this time the field was already fifty years old, as marked from the time of Poincare's early Acta papers that essentially created the subject. The work of Koebe and Poincare on uniformization appeared in 1907. In the seventy years since its first publication, Ford's Automorphic Functions has become a classic. His approach to automorphic functions is primarily through the theory of analytic functions. He begins with a review of the theory of groups of linear transformations, especially Fuchsian groups. He covers the classical elliptic modular functions, as examples of non-elementary automorphic functions and Poincare theta series. Ford includes an extended discussion of conformal mappings from the point of view of functions, which prepares the way for his treatment of uniformization. The final chapter illustrates the connections between automorphic functions and differential equations with regular singular points, such as the hypergeometric equation.

Discontinuous Groups and Automorphic Functions
  • Language: en
  • Pages: 440

Discontinuous Groups and Automorphic Functions

Much has been written on the theory of discontinuous groups and automorphic functions since 1880, when the subject received its first formulation. The purpose of this book is to bring together in one place both the classical and modern aspects of the theory, and to present them clearly and in a modern language and notation. The emphasis in this book is on the fundamental parts of the subject. The book is directed to three classes of readers: graduate students approaching the subject for the first time, mature mathematicians who wish to gain some knowledge and understanding of automorphic function theory, and experts.

A Short Course in Automorphic Functions
  • Language: en
  • Pages: 162

A Short Course in Automorphic Functions

Concise treatment covers basics of Fuchsian groups, development of Poincaré series and automorphic forms, and the connection between theory of Riemann surfaces with theories of automorphic forms and discontinuous groups. 1966 edition.

Spectral Theory of Automorphic Functions
  • Language: en
  • Pages: 189

Spectral Theory of Automorphic Functions

'Et moi ..., si j'avait su comment en revcnrr, One service mathematics has rendered the je n'y serais point aile.' human race. It has put common sense back. Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.

An Introduction to the Theory of Automorphic Functions
  • Language: en
  • Pages: 112

An Introduction to the Theory of Automorphic Functions

  • Type: Book
  • -
  • Published: 1915
  • -
  • Publisher: Unknown

None

Automorphic Forms, Representations and $L$-Functions
  • Language: en
  • Pages: 394

Automorphic Forms, Representations and $L$-Functions

Part 2 contains sections on Automorphic representations and $L$-functions, Arithmetical algebraic geometry and $L$-functions