You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The theory of automorphic forms is playing increasingly important roles in several branches of mathematics, even in physics, and is almost ubiquitous in number theory. This book introduces the reader to the subject and in particular to elliptic modular forms with emphasis on their number-theoretical aspects. After two chapters geared toward elementary levels, there follows a detailed treatment of the theory of Hecke operators, which associate zeta functions to modular forms. At a more advanced level, complex multiplication of elliptic curves and abelian varieties is discussed. The main question is the construction of abelian extensions of certain algebraic number fields, which is traditionally called "Hilbert's twelfth problem." Another advanced topic is the determination of the zeta function of an algebraic curve uniformized by modular functions, which supplies an indispensable background for the recent proof of Fermat's last theorem by Wiles.
When published in 1929, Ford's book was the first treatise in English on automorphic functions. By this time the field was already fifty years old, as marked from the time of Poincare's early Acta papers that essentially created the subject. The work of Koebe and Poincare on uniformization appeared in 1907. In the seventy years since its first publication, Ford's Automorphic Functions has become a classic. His approach to automorphic functions is primarily through the theory of analytic functions. He begins with a review of the theory of groups of linear transformations, especially Fuchsian groups. He covers the classical elliptic modular functions, as examples of non-elementary automorphic functions and Poincare theta series. Ford includes an extended discussion of conformal mappings from the point of view of functions, which prepares the way for his treatment of uniformization. The final chapter illustrates the connections between automorphic functions and differential equations with regular singular points, such as the hypergeometric equation.
Much has been written on the theory of discontinuous groups and automorphic functions since 1880, when the subject received its first formulation. The purpose of this book is to bring together in one place both the classical and modern aspects of the theory, and to present them clearly and in a modern language and notation. The emphasis in this book is on the fundamental parts of the subject. The book is directed to three classes of readers: graduate students approaching the subject for the first time, mature mathematicians who wish to gain some knowledge and understanding of automorphic function theory, and experts.
Concise treatment covers basics of Fuchsian groups, development of Poincaré series and automorphic forms, and the connection between theory of Riemann surfaces with theories of automorphic forms and discontinuous groups. 1966 edition.
'Et moi ..., si j'avait su comment en revcnrr, One service mathematics has rendered the je n'y serais point aile.' human race. It has put common sense back. Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.
Part 2 contains sections on Automorphic representations and $L$-functions, Arithmetical algebraic geometry and $L$-functions