You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This handbook focuses on some important topics from Number Theory and Discrete Mathematics. These include the sum of divisors function with the many old and new issues on Perfect numbers; Euler's totient and its many facets; the Möbius function along with its generalizations, extensions, and applications; the arithmetic functions related to the divisors or the digits of a number; the Stirling, Bell, Bernoulli, Euler and Eulerian numbers, with connections to various fields of pure or applied mathematics. Each chapter is a survey and can be viewed as an encyclopedia of the considered field, underlining the interconnections of Number Theory with Combinatorics, Numerical mathematics, Algebra, or Probability Theory. This reference work will be useful to specialists in number theory and discrete mathematics as well as mathematicians or scientists who need access to some of these results in other fields of research.
Numerous detailed proofs highlight this treatment of functional equations. Starting with equations that can be solved by simple substitutions, the book then moves to equations with several unknown functions and methods of reduction to differential and integral equations. Also includes composite equations, equations with several unknown functions of several variables, vector and matrix equations, more. 1966 edition.
One service mathematics has rendered the ~l moil ..., Ii j'avait su comment en revenir, je n'y serais point aUe.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. Eric T. Bell able to do something with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'(ftre of this series.
This volume contains contributions by the participants of the conference "Groups and Computation", which took place at The Ohio State University in Columbus, Ohio, in June 1999. This conference was the successor of two workshops on "Groups and Computation" held at DIMACS in 1991 and 1995. There are papers on permutation group algorithms, finitely presented groups, polycyclic groups, and parallel computation, providing a representative sample of the breadth of Computational Group Theory. On the other hand, more than one third of the papers deal with computations in matrix groups, giving an in-depth treatment of the currently most active area of the field. The points of view of the papers range from explicit computations to group-theoretic algorithms to group-theoretic theorems needed for algorithm development.
Number theory is one of the few areas of mathematics where problems of substantial interest can be fully described to someone with minimal mathematical background. Solving such problems sometimes requires difficult and deep methods. But this is not a universal phenomenon; many engaging problems can be successfully attacked with little more than one's mathematical bare hands. In this case one says that the problem can be solved in an elementary way. Such elementary methods and the problems to which they apply are the subject of this book. Not Always Buried Deep is designed to be read and enjoyed by those who wish to explore elementary methods in modern number theory. The heart of the book is ...
Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not' grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory arid the struc ture of water meet one ...
Provides engineers and applied scientists with some selected results of functional equations and their applications, with the intention of changing the way they think about mathematical modelling. Many of the proofs are simplified or omitted, so as not to bore or confuse engineers. Functional equati