You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
mlr3 is an award-winning ecosystem of R packages that have been developed to enable state-of-the-art machine learning capabilities in R. Applied Machine Learning Using mlr3 in R gives an overview of flexible and robust machine learning methods, with an emphasis on how to implement them using mlr3 in R. It covers various key topics, including basic machine learning tasks, such as building and evaluating a predictive model; hyperparameter tuning of machine learning approaches to obtain peak performance; building machine learning pipelines that perform complex operations such as pre-processing followed by modelling followed by aggregation of predictions; and extending the mlr3 ecosystem with cu...
This book combines technology and the medical domain. It covers advances in computer vision (CV) and machine learning (ML) that facilitate automation in diagnostics and therapeutic and preventive health care. The special focus on eXplainable Artificial Intelligence (XAI) uncovers the black box of ML and bridges the semantic gap between the technologists and the medical fraternity. Explainable AI in Healthcare: Unboxing Machine Learning for Biomedicine intends to be a premier reference for practitioners, researchers, and students at basic, intermediary levels and expert levels in computer science, electronics and communications, information technology, instrumentation and control, and electri...
Ever wondered what the state of the art is in machine learning and data mining? Well, now you can find out. This book constitutes the refereed proceedings of the 5th International Conference on Machine Learning and Data Mining in Pattern Recognition, held in Leipzig, Germany, in July 2007. The 66 revised full papers presented together with 1 invited talk were carefully reviewed and selected from more than 250 submissions. The papers are organized in topical sections.
The 3-volume set LNAI 13280, LNAI 13281 and LNAI 13282 constitutes the proceedings of the 26th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2022, which was held during May 2022 in Chengdu, China. The 121 papers included in the proceedings were carefully reviewed and selected from a total of 558 submissions. They were organized in topical sections as follows: Part I: Data Science and Big Data Technologies, Part II: Foundations; and Part III: Applications.
This book constitutes the thoroughly refereed post-conference proceedings of the 8th International Conference on Learning and Optimization, LION 8, which was held in Gainesville, FL, USA, in February 2014. The 33 contributions presented were carefully reviewed and selected for inclusion in this book. A large variety of topics are covered, such as algorithm configuration; multiobjective optimization; metaheuristics; graphs and networks; logistics and transportation; and biomedical applications.
The 4-volume set LNAI 13935 - 13938 constitutes the proceedings of the 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, which took place in Osaka, Japan during May 25–28, 2023. The 143 papers presented in these proceedings were carefully reviewed and selected from 813 submissions. They deal with new ideas, original research results, and practical development experiences from all KDD related areas, including data mining, data warehousing, machine learning, artificial intelligence, databases, statistics, knowledge engineering, big data technologies, and foundations.
This book offers the first comprehensive taxonomy for multimodal optimization algorithms, work with its root in topics such as niching, parallel evolutionary algorithms, and global optimization. The author explains niching in evolutionary algorithms and its benefits; he examines their suitability for use as diagnostic tools for experimental analysis, especially for detecting problem (type) properties; and he measures and compares the performances of niching and canonical EAs using different benchmark test problem sets. His work consolidates the recent successes in this domain, presenting and explaining use cases, algorithms, and performance measures, with a focus throughout on the goals of the optimization processes and a deep understanding of the algorithms used. The book will be useful for researchers and practitioners in the area of computational intelligence, particularly those engaged with heuristic search, multimodal optimization, evolutionary computing, and experimental analysis.