You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book will describe the nuclear encoded genes and their expressed proteins of mitochondrial oxidative phosphorylation. Most of these genes occur in eukaryotic cells, but not in bacteria or archaea. The main function of mitochondria, the synthesis of ATP, is performed at subunits of proton pumps (complexes I, III, IV and V), which are encoded on mitochondrial DNA. The nuclear encoded subunits have mostly a regulatory function. However, the specific physiological functions of the nuclear encoded subunits of complexes I, III, IV, and V are mostly unknown. New data indicates that they are essential for life of higher organisms, which is characterized by an adult life without cell division (postmeiotic stage) in most tissues, after the juvenile growth. For complex IV (cytochrome c oxidase) some of these subunits occur in tissue-specific (subunits IV, VIa, VIb, VIIa, VIII), developmental-specific (subunits IV, VIa, and VIIa) as well as species-specific isoforms. Defective genes of some subunits were shown to induce mitochondrial diseases. Mitochondrial genes and human diseases will also be covered.
This innovative reference explores a wide selection of topics associated with aging, providing a solid understanding of the significance and molecular basis of the aging process and charting the course of future research in the area. Stresses the interplay of mitochondria, mitochondrial DNA, oxidants, and antioxidants! Featuring the research of over 55 experts in the area, Understanding the Process of Aging covers the functions of nitric oxide and peroxynitrite in mitochondria integrates several views on the role of mitochondria in the development of apoptosis gives a quantitative analysis of mutations of mitochondrial DNA during human aging highlights mitochondrial free radical production i...
Current Topics in Bioenergetics, Volume 15: Structure, Biogenesis, and Assembly of Energy Transducing Enzyme Systems presents the reaction mechanisms involved in membrane-associated energy transducing processes at the molecular level. This book discusses the developments in the energy transducing systems. Organized into 11 chapters, this volume begins with an overview of the composition and structural aspects of the four respiratory chain complexes. This text then discusses the genetic aspects of various energy transducing systems. Other chapters consider the electron transfer chains of chloroplast, mitochondria, and some photosynthetic bacteria, which contain a multiprotein complex with similar functional and structural properties. This book discusses as well the structure and function of multiple and variable amounts of subunits in cytochrome-c oxidase from various organisms. The final chapter deals with the interdisciplinary path of bioenergetics, with the center of gravity moving from chemistry through genetics to physics. This book is a valuable resource for biologists.
This study asserts that cellular and intracellular membranes are active in every aspect of the body's physiology and pathophysiology. It compares secondary through to quaternary structures and protien sequences and guages their influence on health, disease and drug therapy. The book highlights the importance of correlations, homologies and categorizing multifunctionality by domain and complex.
Decolonizing the Diet challenges the common claim that Native American communities were decimated after 1492 because they lived in “Virgin Soils” that were biologically distinct from those in the Old World. Comparing the European transition from Paleolithic hunting and gathering with Native American subsistence strategies before and after 1492, the book offers a new way of understanding the link between biology, ecology and history. Synthesizing the latest work in the science of nutrition, immunity and evolutionary genetics with cutting-edge scholarship on the history of indigenous North America, Decolonizing the Diet highlights a fundamental model of human demographic destruction: human...
Every year, the Federation of European Biochemical Societies sponsors a series of Advanced Courses designed to acquaint postgraduate students and young postdoctoral fellows with theoretical and practical aspects of topics of current interest in biochemistry, particularly within areas in which significant advances are being made. This volume contains the Proceedings of FEBS Advanced Course No. 88-02 held in Bari, Italy on the topic "Organelles of Eukaryotic Cells: Molecular Structure and Interactions. " It was a deliberate decision of the organizers not to restrict FEBS Advanced Course 88-02 to a discussion of a single organelle or a single aspect but to cover a broad area. One of the objecti...
1. The Mitochondrial and Bacterial Respiratory Chains: From MacMunn and Keilin to Current Concepts; P. Nicholls. 2. The Mitochondrial Enzymes of Oxidative Phosphorylation; Y. Hatefi. 3. Proton Pumps of Respiratory Chain Enzymes; S. Papa, et al. 4. Uncoupling of Respiration and Phosphorylation; V.P. Skulachev. 5. Crystallization, Structure, and Possible Mechanism of Action of Cytochrome c Oxidase from the Soil Bacterium Paracoccus denitrificans; M. Hartmut, et al. 6. The Structure of Crystalline Bovine Heart Cytochrome c Oxidase; S. Yoshikawa, et al. 7. Electron and Proton Transfer in.
This book summarises current knowledge of the structure, function,biosynthesis and regulation of energy-transducing enzymes inmitochondria, chloroplasts and bacteria. Each of the twenty chapters is written by top experts in their field, and Prof. Ernster has ensured that the book as a whole gives a well-integrated picture of the present state of knowledge of the field at its different levels and complexities. Since the publication of Bioenergetics edited by Lars Ernster in 1984, (New Comprehensive Biochemistry Vol. 9) the whole field of bioenergetics has undergone a tremendous expansion. Additionally a transition from membrane bioenergetics to molecular bioenergetics has accompanied this exp...
This volume illustrates the functional properties of NAbs. Authors from pioneering groups report in their chapters on the tissue homeostatic, tissue regenerating and regulatory properties of NAbs and NAbs in pooled human IgG. Scientists interested in the regulation and modulation of components of the immune system found a whole variety of NAbs to cytokines with regulatory and protective functions and NAbs that modulate, e.g., dendritic cells, regulatory T cells, B cells and granulocytes. Considering the large plasma pools and initial difficulties in preparing IVIG that does not induce adverse effects upon infusion into recipients, this volume ends with a historical chapter on how pooled human plasma was fractionated and the IgG component pretreated for a safe intravenous application.